

Corresponding author’s E-mail: arima@earth.cs.miyazaki-u.ac.jp. kat@cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,
aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

37

Research Article

Extension of the Function to Ensure Real-time Traceability
between UML Sequence Diagram and Java Source Code on
RETUSS

Kaoru Arima1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1
1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki,
889-2192, Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-
Sonogi-gun, Nagasaki, 851-2195, Japan

 A R T I C LE IN FO

Article History

Received 25 November 2020
Accepted 28 May 2021

Keywords

Software quality
Traceability
UML
Sequence diagram
Java

ABSTRA C T
Ensuring traceability of software deliverables is one of the methods to ensure software quality.
RETUSS (Real-time Ensure Traceability between UML and Source-code System) is a tool that
saves labor and time, and eliminates mistakes by human handling in ensuring traceability between
UML and source code. However, RETUSS is not useful due to its limited scope of application.
This paper improves the usefulness of RETUSS by extending the function to ensure real-time
traceability between UML sequence diagrams and Java source code on RETUSS.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

.

1. Introduction

The importance of software in society is increasing, and
system failures and software bugs cause significant
economic and social impact. Therefore, ensuring the
quality of systems and software has become more
important. Ensuring traceability of software deliverables
is one of the methods to ensure software quality [1]. It
can specify the scope of the impact due to the
modification in the requirements and remove the gap
between the documents and the source code. However, it
has the following two problems.

 Taking much labor and time to modify similarly other

related deliverables in modifying a part of deliverables.
 Having a risk that you cannot ensure traceability

because of causing mistakes to ensure traceability by
human handling.

In order to solve them, our laboratory developed
RETUSS (Real-time Ensure Traceability between UML
and Source-code System) [2], [3]. RETUSS ensures
traceability between UML (Unified Modeling Language)
[4] and source code by transforming them to each other
in real time. Therefore, RETUSS can save labor and time,
and eliminate mistakes by human handling in ensuring
traceability between UML and source code. RETUSS has
the following functions.

 Description of class diagram
 Description of sequence diagram
 Description of Java source code
 Description of C++ source code
 Ensuring real-time traceability between class diagram

and Java source code
 Ensuring real-time traceability between class diagram

and C++ source code
 Ensuring real-time traceability between sequence

diagrams and Java source code

SUGISAKA
MASANORI

Journal of Advances in Artificial Life Robotics
Vol. 2(1); June (2021), pp. 37–41

ON LINE ISSN 2435-8061; ISSN-L 2435-8061
https://alife-robotics.org/jallr.html

https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

38

However, RETUSS is not useful in ensuring traceability
between sequence diagrams and Java source code due to
its limited scope of application. This paper improves the
usefulness of RETUSS by extending the function to
ensure real-time traceability between UML sequence

diagrams and Java source code on RETUSS.

2. The extended RETUSS

This paper extends the following two functions of the
existing RETUSS.
 Description of sequence diagram
 Ensuring real-time traceability between sequence

diagrams and Java source code

Fig. 1 shows the interface of the extended RETUSS.
The extended RETUSS has the UML window and the
source code window.

The UML window is a window for describing UML.
It has a class diagram tab and a sequence diagram tab. In
the class diagram tab, there are class diagram drawing
buttons and a class diagram description area. In the
sequence diagram tab, there are sequence diagram
drawing buttons and a sequence diagram description area.

The source code window is a window for describing
source code. It has language tabs. Within each language
tabs, there are class tabs. In each class tabs, there is a text
editor.

2.1. Extending the function of the description of
sequence diagram

We add the following three functions to the function of
the description of the sequence diagram.
 Adding a message
 Adding a combined fragment
 Deleting elements
However, the user can only add operation invocation
messages among the messages. In addition, the user can
add only three types of combined fragments: opt, alt, and
loop.

In order to add these three functions, we added three
buttons to the UML window: Message button, Combined
Fragment button, and Delete button. In addition, we add
description dialogs that correspond to these buttons. By
adding these functions, a user can edit the sequence
diagram directly on RETUSS.

2.2. Extending the function to ensure real-time
traceability between sequence diagrams and
Java source code

RETUSS ensures traceability between sequence
diagrams and Java source code in real time by
transforming them in real time. In this paper, we define
four new transformation rules to extend the scope of the
real-time transformation between sequence diagrams and
Java source code. Table 1 shows the four new
transformation rules. The following shows the
correspondence of the elements in the transformation
rules.

 Message
 The message name of the message signature

corresponds to the method name of the method
invocation expression.

 The parameter name of the message signature
corresponds to the parameter name of the method
invocation expression.

 The parameter type of the message signature
corresponds to the parameter type of the method
declaration.

 The return type of the message signature
corresponds to the return type of the method
declaration.

 Combined fragment opt
 The guard of combined fragment opt corresponds

to the conditional expression of the if-then
statement.

 Combined fragment alt
 The guards of combined fragment alt correspond

to the conditional expressions of the if-then-else
statement.

 Combined fragment loop

Fig. 1. The interface of the extended RETUSS

39

 The guard of combined fragment loop
corresponds to the conditional expression of the
while statement.

 The number of loops corresponds the number of
loops calculated from X and Y in the for statement.

Table 1. The four new transformation rules for the real-time transformation between sequence diagrams and Java source code

Name in sequence
diagram Notation in sequence diagram Name in Java Syntax in Java

Message

Method invocation
expression

methodName(parameter, …);

Method declaration
accessModifier returnType
methodName(parameterType
parameterName, …) { … }

Combined fragment opt

if-then statement
if (expression1) {

…
}

Combined fragment alt

if-then-else
statement

if (expression1) {
…

} else if (expression2) {
…

} …

Combined fragment loop

while statement
while (expression) {

…
}

for statement

for(int i=X; i<Y; i++) { … }
for(int i=X; i<=Y; i++) { … }
for(int i=X; i>Y; i--) { … }
for(int i=X; i>=Y; i--) { … }

Fig. 2 shows the data flow of real-time transformation
between sequence diagrams and Java source code. The
sequence diagram information is the data structure to
store sequence diagram elements in RETUSS. The Java
information is the data structure to store Java syntaxes in
RETUSS. The following shows the flow of
transformation from sequence diagrams to Java source
code.

(i) The user specifies a class and an operation, and

then modifies the sequence diagram.
(ii) RETUSS searches for the class and the operation,

and then modifies the sequence diagram
information.

(iii) RETUSS redraws the sequence diagram based on
the sequence diagram information.

(iv) RETUSS transforms the sequence diagram
information into Java information based on the
transformation rules (Table. 1). In this case,
RETUSS transforms only the class to be modified.

(v) RETUSS generates Java source code from Java
information.

(vi) RETUSS displays the Java source code in a source
code window.

Fig. 2. The data flow of real-time transformation between
sequence diagrams and Java source code

The following shows the flow of transformation from

Java source code to sequence diagrams.

(i) The user modifies Java source code.
(ii) RETUSS parses the Java source code of the

modified class.
(iii) RETUSS extracts the Java information from the

AST and integrates it with the existing Java
information.

(iv) RETUSS transforms the Java information into
sequence diagram information based on the
transformation rules (Table. 1). In this case,
RETUSS transforms only the class to be modified.

(v) RETUSS redraws the sequence diagram based on
the sequence diagram information.

40

Fig. 3. The screenshot when the Java source code are written
in the extended RETUSS

3. Application example

Fig. 3 shows the screenshot when the Java source code
are written in the extended RETUSS. It shows that the
extended RETUSS can ensure traceability between
sequence diagram and Java source code in writing if-
then-else statement, while statement, and for statement of
Java. In addition, we confirmed that the extended
RETUSS can ensure traceability between sequence
diagram and Java source code in describing sequence
diagram.

4. Evaluation

To evaluate the usefulness of the extended RETUSS, we
experiment with four students of the University of
Miyazaki. The steps of the experiment are shown below.

(i) The experimenter prepares traceable sequence
diagrams and Java source code. We call these
deliverables.

(ii) The experimenter instructs the participants to
change the deliverables.

(iii) The participants change the deliverables as
instructed.

There are two types in the changes: sequence diagrams
changes, Java source code changes. There are two cases
below for participants to change the deliverables.

 Case A: using the extended RETUSS.
 Case B: using EA (Enterprise Architect) [5] and a text

editor.

Table 2 shows the times it took the participants to change
in the two cases and the two changes. From Table 2,

Table 2. The times it took the participants to change (seconds)

Participants
Sequence

diagrams changes
Java source code

changes
Case A Case B Case A Case B

1 59 205 134 369
2 62 221 95 346
3 38 216 102 361
4 60 289 126 398

Average 54.75 232.75 114.25 368.50

the time in case A was about 76.5% shorter than the time
in case B, when the sequence diagrams changes was
instructed. In addition, the time in case A was about
69.0% shorter than the time in case B, when the Java
source code changes were instructed.

In summary, the extended RETUSS can save labor
and time in ensuring traceability between sequence
diagrams and Java source code. Therefore, the usefulness
of RETUSS has improved by extending the function to
ensure real-time traceability between UML sequence
diagrams and Java source code while retaining the
benefits of the existing RETUSS.

5. Conclusion

This paper improved the usefulness of RETUSS by
extending the function to ensure real-time traceability
between UML sequence diagrams and Java source code
on RETUSS. The extended RETUSS allows you to edit
sequence diagram directly on RETUSS, and also
supports four new transformation rules for sequence
diagram and Java source code.

The experimental results showed that the extended
RETUSS can save the time to ensure traceability between
sequence diagrams and Java source code by about 76.5%
for sequence diagram changes, and about 69.0% for Java
source code changes. Therefore, the usefulness of
RETUSS has improved by extending the function to
ensure real-time traceability between UML sequence
diagrams and Java source code while retaining the
benefits of the existing RETUSS.

The future works are as follows.

 Corresponding to other sequence diagram elements
 Corresponding to other Java source code syntaxes
 Corresponding to other UML diagrams
 Corresponding to other programming languages

References
1. SQuBOK Sakutei Bukai, Guide to the Software Quality

Body of Knowledge, 2nd edn. Ohmsha, 2014 (in Japanese).

https://www.ohmsha.co.jp/book/9784274505225/
https://www.ohmsha.co.jp/book/9784274505225/

41

2. Tetsuro Katayama, Keisuke Mori, Yoshihiro Kita, Hisaaki
Yamaba, Kentaro Aburada, Naonobu Okazaki: RETUSS:
Ensuring Traceability System between Class Diagram in
UML and Java Source Code in Real Time, Journal of
Robotics, Networking and Artificial Life, Vol. 5(2), pp.
114–117, 2018.

3. GitHub, RETUSS: Real-time Ensure Traceability between
UML and Source-code System,
https://github.com/Morichan/Retuss (Accessed 2021-05-
26)

4. The Object Management Group, Welcome to UML Web
Site!, https://www.uml.org/ (Accessed 2021-05-26)

5. Sparx Systems, UML modeling tools for Business,
Software, Systems and Architecture,
https://www.sparxsystems.com/ (Accessed 2021-05-26)

Authors Introduction

Tetsuro Katayama

He received a Ph.D. degree in
engineering from Kyushu University,
Fukuoka, Japan, in 1996. From 1996 to
2000, he has been a Research Associate
at the Graduate School of Information
Science, Nara Institute of Science and
Technology, Japan. Since 2000 he has

been an Associate Professor at the Faculty of Engineering,
Miyazaki University, Japan. He is currently a Professor with
the Faculty of Engineering, University of Miyazaki, Japan.
His research interests include software testing and quality.
He is a member of the IPSJ, IEICE, and JSSST.

Yoshihiro Kita

He received a Ph.D. degree in systems
engineering from the University of
Miyazaki, Japan, in 2011. He is
currently an Associate Professor with
the Faculty of Information Systems,
University of Nagasaki, Japan. His
research interests include software
testing and biometrics authentication.

. Hisaaki Yamaba
He received the B.S. and M.S. degrees
in chemical engineering from the Tokyo
Institute of Technology, Japan, in 1988
and 1990, respectively, and the Ph D.
degree in systems engineering from the
University of Miyazaki, Japan in 2011.
He is currently an Assistant Professor
with the Faculty of Engineering,
University of Miyazaki, Japan. His

research interests include network security and user
authentication. He is a member of SICE and SCEJ.

Kentaro Aburada

He received the B.S., M.S, and Ph.D.
degrees in computer science and
system engineering from the University
of Miyazaki, Japan, in 2003, 2005, and
2009, respectively. He is currently an
Associate Professor with the Faculty of
Engineering, University of Miyazaki,
Japan. His research interests include

computer networks and security. He is a member of IPSJ and
IEICE.

Naonobu Okazaki

He received his B.S, M.S., and Ph.D.
degrees in electrical and
communication engineering from
Tohoku University, Japan, in 1986,
1988 and 1992, respectively. He joined
the Information Technology Research
and Development Center, Mitsubishi
Electric Corporation in 1991. He is
currently a Professor with the Faculty

of Engineering, University of Miyazaki since 2002. His
research interests include mobile network and network
security. He is a member of IPSJ, IEICE and IEEE.

Kaoru Arima
He received the Bachelor's degree in
engineering (computer science and
systems engineering) from the
University of Miyazaki, Japan in 2020.
He is currently a Master's student in
Graduate School of Engineering at the
University of Miyazaki, Japan. His
research interests software quality,

software modeling, and software maintenance.

https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://dx.doi.org/10.2991/jrnal.2018.5.2.9
https://github.com/Morichan/Retuss
https://github.com/Morichan/Retuss
https://github.com/Morichan/Retuss
https://github.com/Morichan/Retuss
https://www.uml.org/
https://www.uml.org/
https://www.sparxsystems.com/
https://www.sparxsystems.com/
https://www.sparxsystems.com/
https://www.sparxsystems.com/

	ARTICLE INFO
	1. Introduction
	2. The extended RETUSS
	2.1. Extending the function of the description of sequence diagram
	2.2. Extending the function to ensure real-time traceability between sequence diagrams and Java source code

	3. Application example
	4. Evaluation
	5. Conclusion
	References

