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A B S TR AC T  
In this paper, synchronization of novel five-dimensional (5D) autonomous hyperchaotic systems 
is studied. The synchronization control law is proposed based on the center translation method. 
A structure compensator is formulated to make the mathematical model of the error system the 
same as that of the response system, and a linear feedback controller and its simplification are 
designed via the Lyapunov stability theory to make the error system globally asymptotically 
stable at the origin. Thus, the two 5D hyperchaotic systems with different initial values are 
synchronized. Some relevant numerical simulation results, such as the curves of the 
corresponding synchronization state variables and the errors, are given to illustrate the feasibility 
and effectiveness of the synchronization control law. 
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1. Introduction

Hyperchaos was first presented in 1979 by Otto Rössler 

[1]. The main differences between hyperchaotic system 

and chaotic system are as follows. Firstly, the minimal 

dimension of the phase space that embeds a hyperchaotic 

attractor should be at least four, which requires the 

minimum number of coupled first-order autonomous 

ordinary differential equations to be four. Secondly, the 

number of terms in the coupled equations giving rise to 

instability should be at least two, of which at least one 

should have a nonlinear function [2]. Hence, hyperchaos 

is much more complicated than chaos, and hyperchaos 

synchronization has greater application significance and 

engineering value in secure communication. 

Stability control of the novel 5D hyperchaotic system 

has been presented in [2]. In this paper, the mathematical 

model of the novel 5D hyperchaotic system is given as 

the drive system. Hyperchaos synchronization of the 5D 

systems with different initial values is studied based on 

the center translation method, so that the mathematical 

model of the synchronization error system would be the 

same as that of the controlled system formulated in [2]. 

Thus, the control law in [2] can be applied to the design 

of the linear feedback synchronization controller in this 

paper. Corresponding numerical simulation results are 

presented to demonstrate the validity of the 

synchronization method. 

2. The Novel 5D Hyperchaotic System

The dynamic equations of the novel 5D hyperchaotic 

system are 
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where 1 1 1 1 1, , , ,x y z v w R  are state variables, and a = 

23, b = 3, c = 18, m = 12 and h = 4 [2]. 

Let the initial values of the system (1) be (x10, y10, z10, 

v10, w10) = (1, 1, 1, 1, 1), then the Lyapunov exponents 

respectively are λ11 = 0.8732 > 0, λ12 = 0.1282 > 0, λ13 = 

-0.0013 ≈ 0, λ14 = -0.5770 < 0 and λ15 = -8.4231 < 0. It

indicates that the system (1) is hyperchaotic. The 

attractors of the 5D hyperchaotic system (1) are shown in 

Figure 1. 

Figure 1  Attractors of the 5D hyperchaotic system: (a1) z-x-y; (a2) v-x-y; (a3) w-x-y; (a4) x-v-z; (a5) x-w-z; (a6) w-x-v 

3. Hyperchaos Synchronization Based on Center

Translation Method

3.1. Formulation of error system 

Take the system (1) as the drive system, then the response 

system is formulated as 
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and 
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are structure compensator and synchronization controller to 

be designed. Let us = 0, uc = 0, and the initial values of the 

response system (2) be (x20, y20, z20, v20, w20) = (5, 0, 4, 3, 

8), then the Lyapunov exponents respectively are λ21 = 

0.9121 > 0, λ22 = 0.1175 > 0, λ23 = -0.0008 ≈ 0, λ24 = -0.5533 

< 0 and λ25 = -8.4755 < 0. It shows that the response system 

(2) is also hyperchaotic.

Let
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be the synchronization error and 
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then the error system is simplified as 
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Comparing the mathematical model of the error system 

(3) with that of the controlled system (2) in [2], it can be

found that the two models are similar. Hence, the

synchronization controller uc is designed as

 
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where 1 2 3 4 5, , , , 0k k k k k  . 

3.2. Design of linear feedback synchronization 

controller 

Theorem 1. Let x = 0 be an equilibrium point for 

( ) ,=x f x where : nD R→f is a locally Lipschitz

map from a domain 
nD R  into 

nR . Let : nV R R→
be a continuously differentiable function such that 
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as a Lyapunov function candidate for the error system (3). 

Then, the derivative V  is derived as
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Thus, the linear feedback synchronization controller uc is 

designed as 

 
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From Theorem 1, the error system (3) is globally 

asymptotically stable at the origin. It indicates that the 

response system (2) is synchronized with the drive system 

(1). 

3.3. Numerical simulation under the synchronization 

controller uc 

Remark 1. The initial values of the drive system (1) and the 

response system (2) are (x10, y10, z10, v10, w10) = (1, 1, 1, 1, 

1) and (x20, y20, z20, v20, w20) = (5, 0, 4, 3, 8) respectively in

this paper.

Definition 1. After adding the structure compensator us

and the linear feedback synchronization controller uc to the 

response system (2), the Lyapunov exponents of the 

response system (2) are called sub-Lyapunov exponents [3]. 

Theorem 2. The response system (2) and the drive system 

(1) will synchronize only if the sub-Lyapunov exponents are

all negative [3].
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The curves of the errors and the corresponding state 

variables before and after adding the structure 

compensator us and the linear feedback synchronization 

controller uc to the response system (2) are shown in 

Figure 2 and Figure 3 respectively. Comparing Figure 3 

with Figure 2, it can be found that the errors e1, e2, e3, e4 

and e5 converge to zero asymptotically and rapidly and the 

corresponding state variables are synchronized well after 

adding us and uc to the response system (2). Moreover, the 

sub-Lyapunov exponents of the response system (2) are 

λ21c = -1.0292, λ22c = -1.0355, λ23c = -3.0000, λ24c = 

-17.4669 and λ25c = -17.4690, which are all negative. From

Theorem 2, the response system (2) and the drive system

(1) have synchronized.

(a) Errors

(b) State variables

Figure 2  Before: (a) Errors; (b) State variables 

(a) Errors

(b) State variables

Figure 3 After adding us and uc: (a) Errors; (b) State variables 

3.4. Simplification of synchronization controller 

Corollary 1. Let x = 0 be an equilibrium point for 

( ) ,=x f x where : nD R→f is a locally Lipschitz 

map from a domain 
nD R into 

nR . Let : nV R R→ be 

a continuously differentiable, radially unbounded, positive 

definite function such that ( ) 0V x  for all 
nRx . Let

( ) 0nS R V=  =x x and suppose that no solution can 

stay identically in S, other than the trivial solution 

( )t  0x . Then, the origin is globally asymptotically 

stable [2]. 

Still take Equation (4) as a Lyapunov function candidate 

for the error system (3). Now let k4 = 0 and substitute k1 = 
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k3 = k4 = 0 into Equation (5). Then, the derivative V  is

reduced to 
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From Corollary 1, to find ( ) 5 0S R V=  =e e , 

note that 
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Therefore, the only solution that can stay identically in 

( ) 5 0S R V=  =e e  is the trivial solution 

( )t  0e . From Corollary 1, the origin is globally 

asymptotically stable. Finally, the synchronization 

controller uc in Equation (6) is simplified as 
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3.5. Numerical simulation under the simplified 

synchronization controller ucs 

The curves of the errors and the corresponding state 

variables before and after adding the structure 

compensator us and the simplified linear feedback 

synchronization controller ucs to the response system (2) 

are shown in Figure 2 and Figure 4 respectively. Comparing 

Figure 4 with Figure 2, it can be found that the errors e1, e2, 

e3, e4 and e5 converge to zero asymptotically and rapidly 

and the corresponding state variables are synchronized well 

after adding us and ucs to the response system (2). 

Furthermore, the sub-Lyapunov exponents of the response 

system (2) are λ21cs = -0.5284, λ22cs = -0.5302, λ23cs = 

-3.0006, λ24cs = -17.4668 and λ25cs = -17.4690, which are all

negative. From Theorem 2, the response system (2) and the

drive system (1) have synchronized. However, comparing

Figure 4 with Figure 3, it can be seen that the speed of

convergence and synchronization under ucs is a little bit

slower than that under uc. Nevertheless, the simplified

synchronization controller ucs only has two feedback

variables, such that it is easier to implement via circuit than

the synchronization controller uc. Hence, the simplified

synchronization controller ucs has higher value in

engineering application.

(a) Errors

(b) State variables

Figure 4 After adding us and ucs: (a) Errors; (b) State variables 
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4. Conclusions

Synchronization of the novel 5D hyperchaotic systems is 

proposed based on the center translation method in this 

paper. A linear feedback synchronization controller and its 

simplification are designed via the Lyapunov stability 

theory. Numerical simulation results illustrate the 

feasibility of the synchronization method. The study has 

some engineering significance. Furthermore, the circuit 

implementation of the synchronization system is under 

investigation and will be reported elsewhere. 
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