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ABSTR AC T  
The most common algorithm for detecting straight lines in a digital image is the Hough Transform 
method. The method involves two consecutive steps: transforming the image edge location onto 
parameter space and voting procedure to acquire line characteristics. The former deals in 
continuous space, and the latter counts votes in a discrete matrix, making the algorithm sensitive 
to noise. We transformed each image pixel location to the parameter space as a Hough line and 
generated a nonlinear oscillator to attract them into the intersection with other lines. This concept 
could contribute to a line detection problem in image processing using a consistent mathematical 
description. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction 

Detecting lines in the image is crucial in computer 
vision [1], [2], [3] since it lays the foundation for object 
detection [4]. A common way to solve the problem is the 
Hough Transform (HT), mathematically sounds for 
detecting a unique focal point by projecting several line 
elements to the parameter space. HT projects the image 
data points from continuous spaces such as Cartesian to 
polar coordinate systems, while it requires the focal point 
search in discrete grids by voting. This voting process 
provides a trade-off problem, affecting the noise removal 
depending on the resolution. It needs higher resolution 
grids to achieve higher precision which needs more 
computational time. To overcome this limitation, we 
proposed a mathematical model based on the continuous 
space dynamics instead of the voting process. It is known 
as nonlinear dynamics having attractor dynamics. Based 
on ordinary differential equations, these dynamics can be 
simulated in a computer using numerical integration 
methods, such as the Euler and Runge-Kutta methods. A 
new method of combining the dual space projection in 
standard HT and a synchronization of self-organizing 
points to represent a single straight line based on the  
 

nonlinear dynamics could solve the original HT’s 
drawbacks. 

This paper focused on the mathematical solution for 
detecting straight lines, which can be obtained from 
nonlinear oscillator dynamics that produces 
synchronization phenomena in a limit cycle and the 
projection space of HT. Moving points can automatically 
concentrate on finding the intersection points of lines in 
the projection space. Therefore, there is no need for the 
voting process. Section 2 described the projection 
method from the Cartesian coordinate system to the 
parameter space and its algorithm for computer 
simulations. A typical nonlinear oscillator dynamic to 
replace the voting process was described in Section 3. In 
Section 4, we newly formulated the proposed system as 
a noise-resistant line detection method, followed by 
computer simulation results in Section 5 and a conclusion 
in Section 6.  

 

2. Traditional Hough Transform Method 

A technique for detecting shapes in an image using 
image analysis is the Hough Transform (HT) [5]. Paul 
Hough introduced this method in 1962, which has been 
applied in various fields [6], [7], [8]. HT converts the 
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location of image points from Cartesian coordinates to a 
more concise representation in parameter space [9].  

 
 

𝜌𝜌 = 𝑥𝑥 cos(𝜃𝜃) + 𝑦𝑦 sin (𝜃𝜃) 
 

(1) 

The location of points in the 𝑋𝑋𝑋𝑋 plane is transformed 
into parameter space by Eq. (1). As a result, each point in 
the 𝑋𝑋𝑋𝑋 plane becomes a sine curve. The length from the 
origin 𝜌𝜌 and the angle 𝜃𝜃, a line perpendicular to the line 
passing through edge points, are obtained by the 
intersection of these sine curves. Figure 1 showed this 
transformation.  

HT method provides an accumulation array of zero 
values with 𝑅𝑅 × 𝑇𝑇 size to detect the intersection of edge 
points in Figure 1(b). 𝑅𝑅 is the number of rows for the 𝜌𝜌 
value, and 𝑇𝑇 is the number of columns for the 𝜃𝜃 value. 
The 𝜌𝜌  value for every point is computed for every 𝜃𝜃 
value, and the nearest 𝜌𝜌 value in the accumulation array 
is increase by 1. This procedure is known as the voting 
procedure of HT. After going through all columns of the 
accumulation array, the cell with the maximum points 
describes the features of the perpendicular line. This 
transformation makes it possible to simplify the shape 
detection problem to a peak detection problem in 
parameter space. 

 
The HT method has the key benefit of being simple, 

enabling parallel information processing. This makes the 
method resistant to noise and capable of detecting 
partially hidden or distorted shapes. In addition, the 
method could be set up to detect a fixed number of shapes 
in an image. 

However, the HT method’s simplicity becomes a 
drawback when detecting shapes other than straight lines. 
The amount of computations grows as the number of 
parameters required to define the shape grows [10], [11]. 
For instance, detecting a circle in an image would need a 
three-dimensional accumulation array for the circle’s 
center (𝑥𝑥, 𝑦𝑦) and its radius 𝑟𝑟. With respect to efforts of 
researchers to enhance the HT method’s efficiency 
through software optimization [12], [13], [14], [15]. 

specialized hardware [16], and the use of artificial 
intelligence [17], this problem still remains unsolved. 

By using an accumulation array in the system, HT 
cannot avoid difficulties, such as the array’s size 
determination to adjust for precise detection. The method 
becomes inaccurate if the grid size of the array is too 
large to discriminate the true spot, and the computational 
time becomes costly if the grid size is too small in an 
unnecessary manner. Furthermore, HT only detects lines 
that have infinite lengths. This is because HT uses its 
parameters to represent lines that do not contain 
information about the line length. Therefore, the HT 
cannot detect lines that have finite lengths. 

 

3. Coupled Nonlinear Oscillator Dynamics 

3.1. Synchronization of Kuramoto Model 

The Kuramoto model (KM) is a mathematical model 
investigating oscillator synchronization [18]. It is 
frequently used in areas such as physics [19], [20]. 
biology [21], and chemistry and has been utilized in 
various contexts, such as neurophysiology [22], [23], 
distributed power generation [24], [25], and secure 
communication [26], [27]. In this paper, we suggest using 
modified model of KM to cluster edges in images based 
on their collinearity. 

The following equation describes the standard model of 
the KM 

 
 

�̇�𝜑𝑖𝑖 = ω𝑖𝑖 + 𝐾𝐾
𝑁𝑁
∑ sin�𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖�𝑁𝑁
𝑗𝑗=1 . 

 
(2) 

Eq. (2) represents a group of 𝑁𝑁 oscillators with a limit 
cycle. These oscillators have natural frequencies 𝜔𝜔𝑖𝑖 and 
phases 𝜃𝜃 . The coupling constant 𝐾𝐾 , and the coupling 
between oscillators is determined by the sine of the 
difference in their phases. The phases change over time 
according to first-order dynamics.  

The KM is not commonly used in image processing 
because oscillators are dynamic while image edges are 
static. However, in [28], researchers applied it to segment 
color images. Using a coupled network, they provided 
three oscillating curves for the red, green, and blue pixel 
values of color images. This produced a superposition of 
oscillation for the image pixels. 

It suggests that the KM’s attractor dynamics of coupled 
nonlinear oscillators changes edge coordinates from 
discrete to continuous space. This function will enable 
the clusterization of edges in parameter space with the 
KM, removing the necessity for an accumulation array in 
the standard HT method. 

 

 
Fig. 1 Hough transformation. a) Points (𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏) and 
(𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐) , a line with length 𝝆𝝆∗  and angle 𝜽𝜽∗  that is 
perpendicular to them in image space.  b) Points 
transformed into sine curves in parameter space.  
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In order to analyze how the KM can detect lines in 
images, we must first examine the behavior of 
straightforward systems. By understanding their 
behavior, it leads a model to classify image edges based 
on their collinearity accurately. 

3.2. Analysis of Stability for two Coupled 
Nonlinear Oscillators 

Let us assume that a system with two oscillators, �̇�𝜑1 and 
�̇�𝜑2, that behaves according to 

 

�
�̇�𝜑1 = 0
�̇�𝜑2 = 𝐾𝐾 sin(𝜑𝜑2 − 𝜑𝜑1) 

 

(3) 

The starting conditions are 𝜑𝜑𝑖𝑖(0) = 𝜑𝜑𝑖𝑖0, where 𝜑𝜑 is the 
phase of the 𝑖𝑖th oscillator and 𝐾𝐾 is the coupling strength.  

To simplify the analysis, it is assumed that �̇�𝜑1 is always 
equal to 0 and focused on the dynamics of the second 
oscillator. The initial values of 𝜑𝜑2

(𝑛𝑛) = [0,𝜋𝜋/2,−𝜋𝜋/
2,𝜋𝜋],𝑛𝑛 = 1 … 4, as shown in Figure 2.  

The description gives the definition of phase 
synchronization as follows. 

Definition 1. Let {𝝋𝝋𝒊𝒊(𝒕𝒕)}𝒊𝒊=𝟏𝟏𝟐𝟐  be solution of our 
system. The oscillators converge to phase 
synchronization if  

 
lim
𝑡𝑡→∞

�𝜑𝜑𝑖𝑖(𝑡𝑡) − 𝜑𝜑𝑗𝑗(𝑡𝑡)� = 0,   for 𝑖𝑖 ≠ 𝑗𝑗.                  (4)  
 

 

Let us examine how our system behaves according to 
Eq. (3) when applying different initial conditions. 

Example 1. 𝜑𝜑1(0),𝜑𝜑2(0) = 0 

The solution to the equation is 𝜑𝜑1(𝑡𝑡) = 0 and 𝜑𝜑2(𝑡𝑡) =
0. This means that there is phase synchronization. 

Example 2. 𝜑𝜑1(0) = 0,𝜑𝜑2(0) = 𝜋𝜋
2

,𝐾𝐾 > 0 

 
𝜑𝜑2(𝑡𝑡) = 𝐾𝐾 sin �

𝜋𝜋
2
− 0� 

= 𝐾𝐾 sin �
𝜋𝜋
2
� 

= 𝐾𝐾 
 

(5) 

Because𝐾𝐾 > 0, �̇�𝜑2(𝑡𝑡) → 𝜋𝜋  and the second oscillator 
converges to the anti-phase. 

Example 3. 𝜑𝜑1(0) = 0,𝜑𝜑2(0) = −𝜋𝜋
2

,𝐾𝐾 > 0 

 
𝜑𝜑2(𝑡𝑡) = 𝐾𝐾 sin �−

𝜋𝜋
2
− 0� 

= 𝐾𝐾 sin �−
𝜋𝜋
2
� 

= −𝐾𝐾. 
 

(6) 

Because �̇�𝜑2(𝑡𝑡) < 0, �̇�𝜑1(𝑡𝑡) → −𝜋𝜋 the second oscillator 
converges to the anti-phase as well. 

Example 4. 𝜑𝜑1(0) = 0,𝜑𝜑2(0) = 𝜋𝜋,𝐾𝐾 > 0 

 
𝜑𝜑2(𝑡𝑡) = 𝐾𝐾 sin(𝜋𝜋 − 0) 

= 𝐾𝐾 sin(𝜋𝜋) 
= 0 

 

(7) 

When the initial position of 𝜑𝜑2(0) = 𝜋𝜋 and 𝜑𝜑2(𝑡𝑡) = 0, 
the second oscillator starts at the anti-phase stable point 
of 𝜋𝜋 and does not move as 𝑡𝑡 → ∞. 

Although both oscillators converge in Example 1, the 0 
point is unstable as shown in Examples 2, 3. 4. As a result, 
the system described by Eq. (3) converges to the anti-
phase. But, if the coupling strength is negative, the two 
oscillators will converge after performing the same 
calculations as in the previous examples. 

 

 
Fig. 2 Interaction between two nonlinear oscillators 
𝝋𝝋𝟏𝟏and 𝝋𝝋𝟐𝟐. The initial positions are shown in a). The 
behavior of the second oscillator is shown in b) when 
𝑲𝑲 > 𝟎𝟎 and c) when 𝑲𝑲 < 𝟎𝟎. A black dot indicates a 
stable point, and a white dot indicates an unstable 
point. 
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4. Coupled Nonlinear Oscillator-based Hough 
Transform for Noise-Robust Line Detection 

4.1. Coupled Nonlinear Oscillator-based Hough 
Transform with single attractor 

The standard HT method is explained in Section 1. 
Instead of the standard HT voting scheme, a model can 
be considered by eliminating it with a nonlinear system 
of equations as the proposed model. Each point in the 
image space is considered as a separate nonlinear 
oscillator and coupled together using the following 
system of equations 

 

�
�̇�𝜑1 = 0

�̇�𝜑2 =
𝜌𝜌1 − 𝜌𝜌2
𝐾𝐾2 + (𝜑𝜑1 − 𝜑𝜑2) 

 

(8) 

The initial conditions 𝜑𝜑𝑖𝑖(0) = 𝜑𝜑𝑖𝑖0, where 𝜑𝜑 is the phase 
of the 𝑖𝑖th oscillator, 𝜌𝜌 is the amplitude of Hough line at 
the 𝜑𝜑 phase and 𝐾𝐾 is the coupling strength based on the 
maximum amplitude of the 𝜌𝜌 value. 

For the sake of finding where both points meet in the 
Hough space, the 𝜌𝜌 and 𝜃𝜃 values of each oscillator have 
to take exact same values individually. According to Eq. 
(3),  it implies that 𝜑𝜑1 stops and then 𝜑𝜑2 moves towards 
𝜑𝜑1. Thus, the first oscillator will pull the second one to 
itself.  

Consequently, choosing the initial phase of the first 
oscillator at the intersection of Hough lines is essential 
and can be calculated analytically 

 
  

𝜌𝜌1 = 𝜌𝜌2 
𝑥𝑥1 cos 𝜃𝜃 + 𝑦𝑦1 sin𝜃𝜃 = 𝑥𝑥2 cos𝜃𝜃 + 𝑦𝑦2 sin 𝜃𝜃 

𝜃𝜃 = tan−1(−(𝑥𝑥1 − 𝑥𝑥2)/(𝑦𝑦1 − 𝑦𝑦2).                   (9) 
 

When the starting phase of the first oscillator as 𝜑𝜑10 =
tan−1(−(𝑥𝑥1 − 𝑥𝑥2)/(𝑦𝑦1 − 𝑦𝑦2)), it goes where two Hough 
lines intersect and start the second oscillator at the fixed 
point, where 𝜌𝜌2 = 0 . In Eq. (9) to get the 𝜃𝜃 =
tan−1(−𝑥𝑥2/𝑦𝑦2) , 𝜑𝜑20 = tan−1(−𝑥𝑥2/𝑦𝑦2) , the coupling 
strength 𝐾𝐾  is the highest 𝜌𝜌 value for each Hough line, 
which is 𝐾𝐾𝑖𝑖 = 𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2.  

Nevertheless, it faces another problem to change the 
sign to refrain from the anti-phase synchronization 
problem in Section 3.2.  

Example 5 showed how to solve this problem. 

Example 5. Two points, 𝑝𝑝1 = (𝑥𝑥1,𝑦𝑦1) = (1,1) and 𝑝𝑝2 =
(𝑥𝑥2,𝑦𝑦2) = (5,2) are given in the image space, as shown 
in Figure 3. For finding the initial values, two oscillators 
need to converge with the same coupling as Eq. (9). 𝜑𝜑10 =
tan−1(−(𝑥𝑥1 − 𝑥𝑥2)/(𝑦𝑦1 − 𝑦𝑦2)) = 4.9574  rad, 𝜑𝜑20 =
tan−1(−𝑥𝑥2/𝑦𝑦2) = 5.0929 rad, 𝐾𝐾2 = 𝑥𝑥22 + 𝑦𝑦22 = 29.  

Figure 3 showed 𝜑𝜑𝑖𝑖0 has 2 solutions for each oscillator 
in a 2𝜋𝜋 period. Therefore, our model needs to be able to 
change the sign depending on where the initial phase of 
the oscillator is. This provides a function to find the 
direction of the oscillator by getting the slope of the 
second Hough line from the first derivative of 𝜌𝜌 function 

 
 

𝑑𝑑𝜌𝜌
𝑑𝑑𝜃𝜃

= 𝑦𝑦 cos𝜃𝜃 − 𝑥𝑥 cos𝜃𝜃. 
 

(10) 

Ultimately there can only be four distinct cases: 
 

(i) 𝜑𝜑10 > 𝜑𝜑20,   𝜌𝜌2′ (𝜑𝜑20) > 0 
(ii) 𝜑𝜑10 < 𝜑𝜑20,   𝜌𝜌2′ (𝜑𝜑20) < 0 
(iii) 𝜑𝜑10 > 𝜑𝜑20,   𝜌𝜌2′ (𝜑𝜑20) < 0 
(iv) 𝜑𝜑10 < 𝜑𝜑20,   𝜌𝜌2′ (𝜑𝜑20) > 0 

 
By examining the options, four different groups were 

defined into two categories, (i, ii) and (iii, iv), with the 
identical effect. Then Eq. (8) changes into the following 
system of equations 

 

⎩
⎪
⎨

⎪
⎧�̇�𝜑1 = 0

�̇�𝜑2 =
𝜌𝜌1 − 𝜌𝜌2
𝐾𝐾2 + (𝜑𝜑1 − 𝜑𝜑2), if A or B

�̇�𝜑2 =
𝜌𝜌2 − 𝜌𝜌1
𝐾𝐾2 + (𝜑𝜑1 − 𝜑𝜑2), if C or D

 

 

(11) 

where A = (𝜑𝜑10 > 𝜑𝜑20,𝜑𝜑2′ (𝜑𝜑20) < 0) , B = (𝜑𝜑10 <
𝜑𝜑20,𝜌𝜌2′ (𝜑𝜑20) > 0) , C = (𝜑𝜑10 > 𝜑𝜑20,𝜌𝜌2′ (𝜑𝜑20) > 0) ,  D =
(𝜑𝜑10 < 𝜑𝜑20,𝜌𝜌2′ (𝜑𝜑20) < 0).  

 
Fig. 3 Example of points (1,1) and (5,2).  
a) Image space. b) Hough space. 
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4.2. Proposed Model for Pair-wise Coupling 

The previous model in Eq. (11) has a significant 
disadvantage in real-life scenarios. Because to analyze an 
image in full, the algorithm has to run 𝑁𝑁 times for all the 
edge points, selecting a single edge point as an attractor 
in each loop. Therefore, the pair-wise coupling is better 
from an optimization standpoint, where two oscillators 
attract each other at the same converging at the 
intersection of Hough line 

 

𝜑𝜑𝚤𝚤̇ = �

𝜌𝜌𝑗𝑗 − 𝜌𝜌𝑖𝑖
𝐾𝐾𝑖𝑖

+ �𝜑𝜑𝑗𝑗 − 𝜑𝜑𝑖𝑖�, if A or B

−
𝜌𝜌𝑗𝑗 − 𝜌𝜌𝑖𝑖
𝐾𝐾𝑖𝑖

+ �𝜑𝜑𝑗𝑗 − 𝜑𝜑𝑖𝑖�, otherwise
 

 

(12) 

where 𝑖𝑖, 𝑗𝑗 – is the index of first and second oscillator in 
pair-wise coupling. 

The only difference from Eq. (11) other than pair-wise 
coupling, the initial phase of all oscillators 𝜑𝜑𝑖𝑖0 will be at 
the 𝜃𝜃-axis in parameter space, which means 

 
𝑥𝑥𝑖𝑖cos𝜑𝜑𝑖𝑖 + 𝑦𝑦𝑖𝑖sin𝜑𝜑𝑖𝑖 = 0 

𝑥𝑥𝑖𝑖cos𝜑𝜑𝑖𝑖 = −𝑦𝑦𝑖𝑖sin𝜑𝜑𝑖𝑖  
sin𝜑𝜑𝑖𝑖
cos𝜑𝜑𝑖𝑖

= �−
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
� 

𝜑𝜑𝑖𝑖 = tan−1 �−
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖
� 

 

(13) 

The above condition ensures that the oscillators will 
have uniform behavior and derivative in Eq. (10) will 
never have a 0 value at the start. 

A detailed description of the coupled nonlinear 
oscillator-based HT algorithm and the traditional HT 
method is given in [29]. 

 

5. Results and Discussion 

The following section shows the proposed algorithm’s 
results for pair-wise coupling on various setups and 
evaluates the accuracy and error of detection. 

5.1. Proposed Model for Pair-wise Coupling 

The proposed model in Eq. (12) was tested extensively 
in various situations. Figure 4 shows the experiment 
setup: only line points (a-d), line points with noise (e), 
distorted line points with noise (f), grid structure (g), and 
varying image size (h). 

First, for only line points experiment, four experiments 
were conducted for each type of line with only line points. 
The number of line points 𝑁𝑁𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙 = 100 , and the of 
iterations up to 𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 < 20000  was selected. The 
proposed model initiated a list of all points in the image., 

then extracted two random points from the list, and 
synchronized them until no points were left.  

Then, for line points with noise, random noise points 
were added to the lines in the previous experiment. This 
experiment was conducted 20 times for each type of line, 
a total of 80 experiments. Sample figures of each line 
type are shown in Figure 5. Since pair-wise coupling 
selects two random points out of all points, including line 
and noise, all of the line points are not detected. 

Additionally, a scenario with the distorted line in the 
presence of noise was tested (Figure 4(f)). In this scenario 
the proposed model struggles to distinguish between line 
and noise points, because oscillators converge to the 
absolute theoretical straight line. However, a distorted 
line is theoretically not a single line but multiple lines. As 
a result, the number of line points is significantly 
decreased compared to the previous experiments, which 
makes it harder to detect line points. 

Furthermore, a grid structure was tested to evaluate the 
proposed model’s ability to detect multiple lines, with 
and without noise. When no noise points are present in 
the image, pair-wise coupling performs well. However, 
if the noise points disrupt the image, the model fails to 
provide good results. 

Lastly, the convergence rate based on points distance 
was tested. In this experiment, 20 evenly distributed 
points from 2 to 1000 were converged together and the 
number of iterations for convergence was registered. 
Figure 6 shows the ratio between Euclidean distance and 
convergence rate. The analysis shows the convergence 
speed of oscillators based on their Euclidean distance =
�(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2  in image space with Δ𝑖𝑖 =
10−6  precision. As shown in the graph, when the 𝐷𝐷 is 
close to 0, it takes a significant number of iterations to 
converge. However, the number of iterations quickly 
drops to 100 when 𝐷𝐷 > 30 . A slight difference in 𝐷𝐷 
means the difference 𝜌𝜌 is also insignificant, which affects 
the oscillator’s speed to be slow. 

Table 1 shows the average line detection rates (%) for 
line types in above described experiments. The pair-wise 
coupling has high detection rates with high precision 
thresholds. 

 

6. Conclusion 

Our mathematical formulation and computer 
experiment clearly demonstrated the replacement of the 
HT voting scheme by coupled nonlinear oscillator 
dynamics. We analyzed single attractor model to 
understand oscillator behavior in simple cases and it was 
successfully extended to the pair-wise model to improve 
limitations on previous model. The model was 
experimentally tested in different possible straight-line 
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configurations. The pair-wise coupling method shows 
high accuracy and precision.  

By using coupled nonlinear oscillators, replacing the 
accumulation array was achieved and the desired 
precision can automatically be set in the proposed model. 
In future work, performance improvement in real-time 
applications will be developed based on the proposed 
model. applications will be developed based on the 
proposed model. 
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gray lines correspond to noise. Red dots in Hough 
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Table 1.  Line point detection rate based on the 
set precision for pair-wise coupling of 

oscillators. 

Line Types Precision (𝜀𝜀) Line Ratio (%) 

Single Line 10−6 99.75 

Line and Noise 10−13 40.49 

Distorted Line and 
Noise 10−12 81.71 

Grid Line 10−7 95.00 

Grid Line and 
Noise 10−12 76.13 

Varying Image 
Size 10−10 99.10 
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