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ABSTR AC T  
Datasets are one of the key elements which determine the performance of a deep learning network. 
Urban environments datasets receive much attention nowadays due to the rise of autonomous cars 
but off-road environment on the other hand lacks quality datasets. Offroad environments need 
equal attention as only 55% of the world’s population lives in urban areas. This paper tackles this 
issue to close the gap of robotic visual perception on the beach, one of the common offroad 
environments that lack attention by presenting a real and synthetic dataset, namely BCRobo.. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction 

Deep learning is blooming since the start of the 21st 
century especially in recent years with the generative 
network like GPT-4 getting popular. On the other hand, 
computer vision is still the center of deep learning 
networks as object detection and image segmentation are 
proven to be extremely useful in every industry. Not to 
mention that electric cars are getting more and more 
popular nowadays and slowly replacing the traditional 
gasoline car. Largely labeled datasets like CityScapes [1] 
and KITTI [2] dataset contribute to the development of 
autonomous driving by providing a huge learning dataset 
to train computer vision-related neural networks. Apart 
from datasets, optimizer algorithms, and learning policy 
also influence the performance of a neural network. 
However, regardless of how well-designed is a neural 
network, the models will always perform better in 
environments that are like its training dataset. In other 

words, trained models tend to skew toward their training 
dataset. 
 
This is also known as the overfitting issue that all single 
deep-learning neural networks are facing now. For 
instance, an image segmentation model trained with urban 
datasets will have an outstanding performance in urban 
areas but in turn, have a corresponding substantial 
performance in rural areas. Depending on the situation, 
this property of a neural network might be useful because 
it is specialized in doing one thing at once. In other words, 
neural networks trade flexibility for accuracy in a specific 
territory. A simple workaround to tackle this problem of 
diversity in neural networks is to have different kinds of 
training datasets for different applications. 
 
The primary objective of this paper is to drive progress in 
image segmentation specifically within offroad settings, 
with a particular emphasis on beach environments. The 
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exploration and availability of datasets in offroad 
environments, unlike urban environments, have received 
less attention, primarily due to the growing emphasis on 
autonomous driving cars. However, the advancement of 
autonomous robots in offroad settings, including forest and 
beach exploration, remains a significant focus for 
researchers in the field of robotics. 
 
The paper commences by providing an overview of the 
sensor setup, dataset configuration, and the process of 
collecting the data. Subsequently, it presents the dataset's 
statistics and evaluates its performance using three cutting-
edge image segmentation networks. 

2. Sensor Setup 

Figure 1 illustrates the comprehensive sensor setup 
employed for capturing the BCRobo dataset. The study 
utilizes SOMA, an autonomous forest and beach 
exploration robot developed within Hayashi Laboratory 
[3]. Originally an All-Terrain Vehicle (ATV), SOMA 
underwent modifications to transform into an autonomous 
driving exploration robot. In addition to its innovative 
fully automated steering mechanism, the robot is equipped 
with various distinct sensor types, listed as follows: 

2.1. RGB-D sensor 

Positioned at around 1.1m above the ground, an RGB-D 
sensor is mounted in the frontal area of SOMA. The RGB-
D camera employed is the Microsoft Azure Kinect DK [4]. 
The depth camera is set to operate in Wide Front of View 
(WFOV) mode, generating 1024x1024 depth images at a 
rate of 15 frames per second (fps). Simultaneously, the 
RGB camera is configured to capture a 1280x720 image 

stream in MJPEG format, maintaining a frame rate of 
30fps. 

2.2. Global Positioning System (GPS) 

SOMA is also equipped with an Emlid Reach RS+ device, 
allowing for the inclusion of GPS data in the form of 
NMEA, also known as National Marine Electronics 
Association messages. The GPS data is acquired with a 
precision of up to +/- 5cm, utilizing Real-time Kinematic 
Positioning (RTK) technology.  

2.3. Lidar sensor 

As depicted in Figure 1, a Velodyne VLP-16 rotating 3D 
laser scanner is mounted on the upper part of SOMA. This 
sensor has the ability to capture 3D point clouds within a 
360-degree field of view, covering a range of 1m to 100m. 
It operates at a rotation rate of 5Hz and maintains an 
accuracy of +/- 3cm [5]. 

3. Structure of Dataset 

The BCRobo dataset comprises both real and synthetic 
beach environment data, including image sequences and 
LiDAR 3D point clouds recorded by SOMA Robot. The 
robot's operations were controlled manually by a human 
operator to travel and capture the scenes of various beaches 
around Kitakyushu City and Munakata City in Japan. In 
total, 6850 color images were recorded, and manually 
annotated ground truth images were provided for every 
tenth frame of a video sequence. In cases where the tenth 
frame appeared blurred, the preceding or subsequent frame 
may have been used as a substitute. The exploration data 
can be categorized based on the following locations: 
 
• Jinoshima Island – An island in Munakata City with a 

port area and rock bed environment. 
• Agawa Hosenguri Seaside Park – A typical beach for 

vacation and sea bathing. 

 
 

Figure 1: SOMA Robot’s Sensor Setup 

Figure 2: Class labels, Video sequences frame and annotated 
sample  
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Figure 2 depicts sample RGB images captured in Agawa 
Hosenguri Seaside Park and Jinoshima, along with their 
corresponding manually annotated images with 24 class 
labels. Approximately 10 minutes of data were recorded 
for each location, with a video frame rate of 15Hz as well 
as a LiDAR point cloud rate of 1Hz. It should be noted that 
not every single image in the video sequence is included 
in this dataset. Also, the annotated images within this 
dataset encompass 24 classes derived from the RUGD and 
KITTI datasets. 

Thanks to the RTK GPS sensor, the precise location of the 
robot is accurately tracked throughout the entire recording 
process. However, there were instances when the GPS 
connection with the base station was weak, leading to the 
prediction of robot routes using the available GPS 
coordinates, as illustrated in Figure 3. In Figure 3, SOMA 
is controlled manually according to the red route in a back-
and-forth manner. 

 
The synthetic part of this dataset shown in Figure 4 is 
generated through a beach environment simulated in 
Unreal Engine 4. An unreal plugin, UnrealCV [13] is 
utilized to perform automatic annotation which generates 
the annotated images based on the objects’ material type. 
This dataset consists of 300 synthetic images and its 
corresponding annotated images which is approximately 
around 30% of the whole dataset. 

3.1.  Statistical Analysis of BCRobo Dataset 

The distribution of class annotations in the BCRobo 
dataset is illustrated in Figure 5. As anticipated, the dataset 
exhibits a bias towards the sky, grass, sand, and water 
labels. This outcome aligns with the dataset's specific 
purpose of addressing the scarcity of image segmentation 
datasets for beach environments. Given the requirement 
for autonomous robots to navigate accurately in beach 
environments, it becomes essential for them to distinguish 
between various types of traversable terrain such as sand, 
grass, and mulch, while identifying untraversable areas 
like water and rock beds. 

4. Experiment and Evaluation 

To assess the dataset's quality and practical applicability, 
three state-of-the-art semantic segmentation methods were 
chosen to be trained using the BCRobo dataset. 
Specifically, the selection of these three models was based 
on their ResNet50 backbone structure [6] within this 
experiment. ResNet50 was selected as the constant 
variable in this experiment due to its significance as the 
pioneering successful deep feedforward neural network. 
Despite being introduced as the earliest working model of 
its kind, ResNet50 continues to be widely employed as a 
backbone and remains one of the most frequently 
referenced neural networks in image segmentation 
methods since its victory in the ImageNet competition of 
2015. These semantic segmentation approaches selected 
for this experiment are as follows: 
 
• PSPnet [7]  – ResNet50 – d8 backbone 
• OCRnet [8] – ResNet50 – d8 backbone 
• UPerNet [9]  – ResNet50 
 
PSPnet, an early image segmentation approach that 
incorporates global context information in scene parsing, 
emerged as the winner in the PASCAL VOC and 
Cityscapes benchmark back in 2016. The inclusion of 

Figure 3: Data collection route predicted with GPS  

Figure 5: Annotated Class Pixel Percentages 

Figure 4: Synthetic RGB and Annotated Images 
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global scene category analysis has proven to be valuable 
in intricate scene parsing scenarios, particularly in beach 
environments, where careful attention is required to 
distinguish various sub-regions containing significantly 
small or large objects.  
 
Among the three selected approaches for this experiment, 
OCRnet stands out as the most recent one. Its notable 
feature is the capability to discriminate between contextual 
pixels belonging to the same object class and those 
belonging to different object classes. Furthermore, the 
utilization of dilated convolutions for multi-scale context 
enables OCRnet to leverage the high-resolution and 
extensive contextual information in this dataset. 
 
In contrast, UPerNet aims to integrate multiple tasks such 
as texture recognition, object classification, pixel-level 
scene parsing, and scene recognition within a single neural 
network, utilizing an unprecedented learning approach 
namely unified perceptual parsing. Like PSPnet, UPerNet 
incorporates the Pyramid Pooling Module (PPM), 
applying one PPM for scene, object, part, and material 
recognition.  

4.1. Experimental Setup 

Similar to other semantic datasets, the recorded images in 
this experiment are divided into the train, validation, and 
test sets without considering the synthetic images 
generated using Unreal Engine. Specifically, 80% of the 
manually annotated images are allocated to the train set, 
while the remaining 20% is evenly distributed between the 
validation and test sets. Since the dataset encompasses two 
distinct beach sceneries, it is essential to ensure that the 
image segmentation models are trained equally with a 
similar splitting ratio. To achieve this, the aforementioned 
splitting ratio is applied separately to each beach 
environment, and the resulting subsets are combined as the 
final train set, validation set, and test set, as shown in Table 
1. 
 

Table 1.  Train set, Validation set, and Test set. 

 Jinoshima Agawa Total % 
Train 315 233 548 80.00 

Validation 39 30  69 10.07 
Test 39 29   68     9.93 

 
The training processes of this experiment are conducted in 
the environment as below: 
• Nvidia RTX 3090 – 3 units 
• AMD Ryzen Threadripper 3960X 24-Core  

• MMSegmentation v0.29.1 [10] 
• Ubuntu LTS 20.04 
 
The images are initially resized to 688x550 before being 
fed into the deep learning network for training. A crop size 
of 300x375 is set for the training process. The batch size is 
configured at 6 per GPU, totaling 18 batches since 3 GPUs 
are utilized. For optimization, the Stochastic Gradient 
Descent (SGD) optimizer with momentum [11] is chosen, 
with a learning rate of 0.015 and a momentum of 0.9. A 
weight decay of 0.0004 is applied. To prevent overtraining 
at the beginning of the training process, the "Polynomial 
learning rate" policy with warmup is employed. This 
policy involves linearly increasing the learning rate for 
1000 iterations before it reaches 0.015, followed by a 
polynomial decay until it reaches the minimum learning 
rate of 0.0001 for the entire training duration. Using 
MMSegmentation, the models are trained for 2000 epochs 
which are approximately 60000 iterations for all three 
models mentioned before. 

4.2. Result Evaluation 

The efficiency and performance of the models are assessed 
using the standard semantic segmentation metrics, 
including mean pixel-wise classification accuracy (mAcc) 
and mean Intersection-over-Union (mIoU). mIoU is 
computed as the mean Intersection-over-Union of each 
class, where IoU is defined as TP/(TP+FP+FN) [12]. Here, 
TP represents true positives, FP stands for false positives, 
and FN denotes false negatives. Additionally, mAcc is 
calculated as the mean pixel classification accuracy (aAcc) 
across all classes. This evaluation process involves passing 
the test and validation sets into the trained models, also 
known as the inferring process. The results are presented 
in Table 2. Furthermore, an additional evaluation is 
conducted on all three sets combined, as indicated in Table 
3. 
 

Table 2.  Testing on Test set + Validation set 

 PSPnet, % OCRnet, % UPerNet, % 
mIoU 73.90 74.64 75.34 
mAcc 81.74 83.26  84.22 
aAcc 98.09 98.06        97.83 

 

Table 3.  Testing on the whole dataset including 
the training set  

 
 PSPnet, % OCRnet, % UPerNet, % 

mIoU 71.76 72.32 71.70 
mAcc 78.22 79.71  79.14 
aAcc 98.20 98.12        97.86 
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In general, the evaluation results indicate that 
regardless of the sets used, all models achieve a 
commendable mIoU rate above ~70%, demonstrating their 
ability to correctly learn the visual classes. The pixel-wise 
classification accuracy (aAcc) also exhibits high values, 
approximately ~98%. However, some degradation is 
observed in terms of mAcc. This degradation is likely 
attributed to the presence of irregular boundaries, which 
are common in beach environments due to factors such as 
fluctuating water tides, shifting sand formations, and the 
movement of tree branches and leaves caused by windy 
conditions. 

5. Summary  

In summary, the BCRobo dataset is a specialized 
collection of high-resolution images of beach 
environments recorded by the SOMA field exploration 
robot. Consequently, every image segmentation model that 
is trained with the BCRobo dataset would likely achieve 
better mIoU values if compared to other prominent 
datasets. This bias towards major class labels in the beach 
environments, including sky, water, sand, and trees, within 
the dataset contributes to this trend.  
 
In conclusion, the experimental evaluation using PSPnet, 
OCRnet, and UPerNet demonstrates the effectiveness of 
this dataset for performing image segmentation in beach 
environments, with mIoU scores exceeding ~70%. 
However, it should be noted that the high mIoU achieved 
by these models implies that they may not perform as well 
in environments other than the beach. This limitation is a 
common trade-off in current neural network models, 
where accuracy often comes at the expense of diversity. 
Therefore, it is advisable to combine this dataset with 
others when conducting image segmentation in scenes that 
extend beyond beach environments.  
 
Currently, the BCRobo dataset primarily focuses on 
beaches located in the southern region of Japan, 
specifically the Kyushu area. However, there are plans to 
further enhance the dataset by incorporating additional 
images and manually annotated images from various 
beach environments across other parts of Japan and Asia. 
The dataset can be accessed and downloaded from 
https://github.com/chijie1998/BCRobo-dataset, providing 
685 real manually annotated images as well as 300 
synthetic annotated images along with its original RGB 

images. Due to their large sizes, complete video sequences 
and point clouds are available upon request.  
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