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ABSTR AC T  
Datasets are one of the key elements which determine the performance of a deep learning network. 
Urban environments datasets receive much attention nowadays due to the rise of autonomous cars 
but off-road environment on the other hand lacks quality datasets. Offroad environments need 
equal attention as only 55% of the world’s population lives in urban areas. This paper tackles this 
issue to close the gap of robotic visual perception on the beach, one of the common offroad 
environments that lack attention by presenting a real and synthetic dataset, namely BCRobo. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                    This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

 

1. Introduction 

Deep learning is blooming since the start of the 21st 
century especially in recent years with the generative 
network like GPT-4 getting popular. On the other hand, 
computer vision is still the center of deep learning 
networks as object detection and image segmentation are 
proven to be extremely useful in every industry. Not to 
mention that electric cars are getting more and more 
popular nowadays and slowly replacing the traditional 
gasoline car. Largely labeled datasets like CityScapes [1] 
and KITTI [2] dataset contribute to the development of 
autonomous driving by providing a huge learning dataset 
to train computer vision-related neural networks. Apart 
from datasets, optimizer algorithms, and learning policy 

also influence the performance of a neural network. 
However, regardless of how well-designed is a neural 
network, the models will always perform better in 
environments that are like its training dataset. In other 
words, trained models tend to skew toward their training 
dataset. 
 
This is also known as the overfitting issue that all single 
deep-learning neural networks are facing now. For 
instance, an image segmentation model trained with 
urban datasets will have an outstanding performance in 
urban areas but in turn, have a corresponding substantial 
performance in rural areas. Depending on the situation, 
this property of a neural network might be useful because 
it is specialized in doing one thing at once. In other words, 

neural networks trade flexibility for 
accuracy in a specific territory. A simple workaround to 
tackle this problem of diversity in neural networks is to 

have different kinds of training datasets for different 
applications. 
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The primary objective of this paper is to drive progress 
in image segmentation specifically within offroad 
settings, with a particular emphasis on beach 
environments. The exploration and availability of 
datasets in offroad environments, unlike urban 
environments, have received less attention, primarily due 
to the growing emphasis on autonomous driving cars. 
However, the advancement of autonomous robots in 
offroad settings, including forest and beach exploration, 
remains a significant focus for researchers in the field of 
robotics. 
 
The paper commences by providing an overview of the 
sensor setup, dataset configuration, and the process of 
collecting the data. Subsequently, it presents the dataset's 
statistics and evaluates its performance using three 
cutting-edge image segmentation networks. 

2. Sensor Setup 

Figure 1 illustrates the comprehensive sensor setup 
employed for capturing the BCRobo dataset. The study 
utilizes SOMA, an autonomous forest and beach 
exploration robot developed within Hayashi Laboratory 
[3]. Originally an All-Terrain Vehicle (ATV), SOMA 
underwent modifications to transform into an 
autonomous driving exploration robot. In addition to its 
innovative fully automated steering mechanism, the 
robot is equipped with various distinct sensor types, 
listed as follows: 

2.1. RGB-D sensor 

Positioned at around 1.1m above the ground, an RGB-D 
sensor is mounted in the frontal area of SOMA. The 
RGB-D camera employed is the Microsoft Azure Kinect 

DK [4]. The depth camera is set to operate in Wide Front 
of View (WFOV) mode, generating 1024x1024 depth 
images at a rate of 15 frames per second (fps). 
Simultaneously, the RGB camera is configured to capture 
a 1280x720 image stream in MJPEG format, maintaining 
a frame rate of 30fps. 

2.2. Global Positioning System (GPS) 

SOMA is also equipped with an Emlid Reach RS+ device, 
allowing for the inclusion of GPS data in the form of 
NMEA, also known as National Marine Electronics 
Association messages. The GPS data is acquired with a 
precision of up to +/- 5cm, utilizing Real-time Kinematic 
Positioning (RTK) technology.  

2.3. Lidar sensor 

As depicted in Figure 1, a Velodyne VLP-16 rotating 3D 
laser scanner is mounted on the upper part of SOMA. 
This sensor has the ability to capture 3D point clouds 
within a 360-degree field of view, covering a range of 1m 
to 100m. It operates at a rotation rate of 5Hz and 
maintains an accuracy of +/- 3cm [5]. 

3. Structure of Dataset 

The BCRobo dataset comprises both real and synthetic 
beach environment data, including image sequences and 
LiDAR 3D point clouds recorded by SOMA Robot. The 
robot's operations were controlled manually by a human 
operator to travel and capture the scenes of various 
beaches around Kitakyushu City and Munakata City in 
Japan. In total, 6850 color images were recorded, and 
manually annotated ground truth images were provided 
for every tenth frame of a video sequence. In cases where 
the tenth frame appeared blurred, the preceding or 
subsequent frame may have been used as a substitute. 
The exploration data can be categorized based on the 
following locations: 
 
• Jinoshima Island – An island in Munakata City with 

a port area and rock bed environment. 
• Agawa Hosenguri Seaside Park – A typical beach for 

vacation and sea bathing. 
 

Figure 1: SOMA Robot’s Sensor Setup 
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Figure 2 depicts sample RGB images captured in Agawa 
Hosenguri Seaside Park and Jinoshima, along with their 
corresponding manually annotated images with 24 class 
labels. Approximately 10 minutes of data were recorded 
for each location, with a video frame rate of 15Hz as well 
as a LiDAR point cloud rate of 1Hz. It should be noted 
that not every single image in the video sequence is 
included in this dataset. Also, the annotated images 
within this dataset encompass 24 classes derived from the 
RUGD and KITTI datasets. 

Thanks to the RTK GPS sensor, the precise location of 
the robot is accurately tracked throughout the entire 
recording process. However, there were instances when 
the GPS connection with the base station was weak, 
leading to the prediction of robot routes using the 
available GPS coordinates, as illustrated in Figure 3. In 
Figure 3, SOMA is controlled manually according to the 
red route in a back-and-forth manner. 
The synthetic part of this dataset shown in Figure 4 is 
generated through a beach environment simulated in 
Unreal Engine 4. An unreal plugin, UnrealCV [13] is 

utilized to perform automatic annotation which generates 
the annotated images based on the objects’ material type. 
This dataset consists of 300 synthetic images and its 
corresponding annotated images which is approximately 
around 30% of the whole dataset. 

3.1. Statistical Analysis of BCRobo Dataset 

The distribution of class annotations in the BCRobo 
dataset is illustrated in Figure 5. As anticipated, the 
dataset exhibits a bias towards the sky, grass, sand, and 
water labels. This outcome aligns with the dataset's 
specific purpose of addressing the scarcity of image 
segmentation datasets for beach environments. Given the 
requirement for autonomous robots to navigate 
accurately in beach environments, it becomes essential 
for them to distinguish between various types of 
traversable terrain such as sand, grass, and mulch, while 
identifying untraversable areas like water and rock beds. 

4. Experiment and Evaluation 

To assess the dataset's quality and practical applicability, 
three state-of-the-art semantic segmentation methods 
were chosen to be trained using the BCRobo dataset. 
Specifically, the selection of these three models was 
based on their ResNet50 backbone structure [6] within 
this experiment. ResNet50 was selected as the constant 
variable in this experiment due to its significance as the 
pioneering successful deep feedforward neural network. 
Despite being introduced as the earliest working model 
of its kind, ResNet50 continues to be widely employed as 
a backbone and remains one of the most frequently 
referenced neural networks in image segmentation 
methods since its victory in the ImageNet competition of 
2015. These semantic segmentation approaches selected 
for this experiment are as follows: 
 

Figure 2: Class labels, Video sequences frame and 
annotated sample  

Figure 3: Data collection route predicted with GPS  

Figure 4: Synthetic RGB and Annotated Images 

Figure 5: Annotated Class Pixel Percentages 
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 PSPnet [7]  – ResNet50 – d8 backbone 
 OCRnet [8] – ResNet50 – d8 backbone 
 UPerNet [9]  – ResNet50 
 
PSPnet, an early image segmentation approach that 
incorporates global context information in scene parsing, 
emerged as the winner in the PASCAL VOC and 
Cityscapes benchmark back in 2016. The inclusion of 
global scene category analysis has proven to be valuable 
in intricate scene parsing scenarios, particularly in beach 
environments, where careful attention is required to 
distinguish various sub-regions containing significantly 
small or large objects.  
 
Among the three selected approaches for this experiment, 
OCRnet stands out as the most recent one. Its notable 
feature is the capability to discriminate between 
contextual pixels belonging to the same object class and 
those belonging to different object classes. Furthermore, 
the utilization of dilated convolutions for multi-scale 
context enables OCRnet to leverage the high-resolution 
and extensive contextual information in this dataset. 
 
In contrast, UPerNet aims to integrate multiple tasks such 
as texture recognition, object classification, pixel-level 
scene parsing, and scene recognition within a single 
neural network, utilizing an unprecedented learning 
approach namely unified perceptual parsing. Like PSPnet, 
UPerNet incorporates the Pyramid Pooling Module 
(PPM), applying one PPM for scene, object, part, and 
material recognition.  

4.1. Experimental Setup 

Similar to other semantic datasets, the recorded images 
in this experiment are divided into the train, validation, 
and test sets without considering the synthetic images 
generated using Unreal Engine. Specifically, 80% of the 
manually annotated images are allocated to the train set, 
while the remaining 20% is evenly distributed between 
the validation and test sets. Since the dataset 
encompasses two distinct beach sceneries, it is essential 
to ensure that the image segmentation models are trained 
equally with a similar splitting ratio. To achieve this, the 
aforementioned splitting ratio is applied separately to 
each beach environment, and the resulting subsets are 
combined as the final train set, validation set, and test set, 
as shown in Table 1. 
 
 
 

 
Table 1.  Train set, Validation set, and Test set. 

 Jinoshima Agawa Total % 

Train 
1. 31

5 233 548 80.00 
Validation 39 30  69 10.07 

Test 39 29   68     9.93 
 
The training processes of this experiment are conducted 
in the environment as below: 
 Nvidia RTX 3090 – 3 units 
 AMD Ryzen Threadripper 3960X 24-Core  
 MMSegmentation v0.29.1 [10] 
 Ubuntu LTS 20.04 
 
The images are initially resized to 688x550 before being 
fed into the deep learning network for training. A crop 
size of 300x375 is set for the training process. The batch 
size is configured at 6 per GPU, totaling 18 batches since 
3 GPUs are utilized. For optimization, the Stochastic 
Gradient Descent (SGD) optimizer with momentum [11] 
is chosen, with a learning rate of 0.015 and a momentum 
of 0.9. A weight decay of 0.0004 is applied. To prevent 
overtraining at the beginning of the training process, the 
"Polynomial learning rate" policy with warmup is 
employed. This policy involves linearly increasing the 
learning rate for 1000 iterations before it reaches 0.015, 
followed by a polynomial decay until it reaches the 
minimum learning rate of 0.0001 for the entire training 
duration. Using MMSegmentation, the models are 
trained for 2000 epochs which are approximately 60000 
iterations for all three models mentioned before. 

4.2. Result Evaluation 

The efficiency and performance of the models are 
assessed using the standard semantic segmentation 
metrics, including mean pixel-wise classification 
accuracy (mAcc) and mean Intersection-over-Union 
(mIoU). mIoU is computed as the mean Intersection-
over-Union of each class, where IoU is defined as 
TP/(TP+FP+FN) [12]. Here, TP represents true positives, 
FP stands for false positives, and FN denotes false 
negatives. Additionally, mAcc is calculated as the mean 
pixel classification accuracy (aAcc) across all classes. 
This evaluation process involves passing the test and 
validation sets into the trained models, also known as the 
inferring process. The results are presented in Table 2. 
Furthermore, an additional evaluation is conducted on all 
three sets combined, as indicated in Table 3. 
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 Table 2.  Testing on Test set + Validation set 

 PSPnet, % OCRnet, % UPerNet, % 

mIoU 
2. 73

.90 74.64 75.34 
mAcc 81.74 83.26  84.22 
aAcc 98.09 98.06        97.83 

 
 Table 3.  Testing on the whole dataset 

including the training set  

 PSPnet, % OCRnet, % UPerNet, % 

mIoU 
3. 71

.76 72.32 71.70 
mAcc 78.22 79.71  79.14 
aAcc 98.20 98.12        97.86 

 
In general, the evaluation results indicate that 

regardless of the sets used, all models achieve a 
commendable mIoU rate above ~70%, demonstrating 
their ability to correctly learn the visual classes. The 
pixel-wise classification accuracy (aAcc) also exhibits 
high values, approximately ~98%. However, some 
degradation is observed in terms of mAcc. This 
degradation is likely attributed to the presence of 
irregular boundaries, which are common in beach 
environments due to factors such as fluctuating water 
tides, shifting sand formations, and the movement of tree 
branches and leaves caused by windy conditions. 

5. Summary  

In summary, the BCRobo dataset is a specialized 
collection of high-resolution images of beach 
environments recorded by the SOMA field exploration 
robot. Consequently, every image segmentation model 
that is trained with the BCRobo dataset would likely 
achieve better mIoU values if compared to other 
prominent datasets. This bias towards major class labels 
in the beach environments, including sky, water, sand, 
and trees, within the dataset contributes to this trend.  
 
In conclusion, the experimental evaluation using PSPnet, 
OCRnet, and UPerNet demonstrates the effectiveness of 
this dataset for performing image segmentation in beach 
environments, with mIoU scores exceeding ~70%. 
However, it should be noted that the high mIoU achieved 
by these models implies that they may not perform as 
well in environments other than the beach. This 
limitation is a common trade-off in current neural 
network models, where accuracy often comes at the 

expense of diversity. Therefore, it is advisable to 
combine this dataset with others when conducting image 
segmentation in scenes that extend beyond beach 
environments.  
 
Currently, the BCRobo dataset primarily focuses on 
beaches located in the southern region of Japan, 
specifically the Kyushu area. However, there are plans to 
further enhance the dataset by incorporating additional 
images and manually annotated images from various 
beach environments across other parts of Japan and Asia. 
The dataset can be accessed and downloaded from 
https://github.com/chijie1998/BCRobo-dataset, 
providing 685 real manually annotated images as well as 
300 synthetic annotated images along with its original 
RGB images. Due to their large sizes, complete video 
sequences and point clouds are available upon request.  
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