
Corresponding author’s E-mail: kat@cs.miyazaki-u.ac.jp, miyashita@earth.cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,
aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

35

Research Article
Prototype of the Framework CATdd to Support Continuous
Development in Test Driven Development

Takeaki Miyashita1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1
1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, Gakuen-kibanadai nishi, Miyazaki, 889-2192,
Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-
gun, Nagasaki, 851-2195, Japan

A R T I C L E IN FO
Article History

Received 25 Nobember 2022
Accepted 04 September 2023

Keywords
Source code generation
Test driven development (TDD)
Large language model (LLM)

ABSTR AC T
TDD is a development methodology to improve software quality. In this study, we prototype the
framework CATdd (Continuous Automated Test Driven Development), which supports
continuous development with TDD. CATdd reduces the time of implementation step in TDD by
generating new source code that passes tests using LLM. CATdd maintains consistency with other
source code in the project by using existing source code and related source code to prompt. As a
result of the evaluation experiments, the time for the implementation step in TDD was reduced
by 94% for a simple task and by 56% for another more complex task. In conclusion, CATdd is
useful to support continuous development.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.

 This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Software quality and development efficiency have
become more important [1]. Test Driven Development
(TDD) is a development methodology to improve
software quality [2]. In TDD, developers repeat a series
of test design step, implementation step, and refactoring
step to make test cases and source code better. By
reducing the time of the implementation step in TDD,
developers can focus more on test [3].

To improve the efficiency of software development,
source code generation using the Large Language Model
(LLM) has been studied [4], [5]. However, source code
generated by LLM may have inconsistencies with other
source code in the project. Examples of inconsistencies
are duplication of processing between source codes,
mismatch of arguments in function calls, and mismatch
of coding styles. In addition, if the LLM ignores
refactoring by the developer and overwrites the source
code, the developer will have to repeat the refactoring.

Such inconsistencies lead to increased development time
and bugs in continuous development. Hence, to support
continuous development, it is necessary to resolve such
inconsistencies and maintain consistency in the project.

In this study, we prototype the framework CATdd
(Continuous Automated Test Driven Development),
which supports continuous development with TDD.
CATdd reduces the time of implementation step in TDD
by generating new source code that passes tests using
LLM. CATdd maintains consistency with other source
code in the project by using existing source code and
related source code to prompt. In this prototype, we use
python to implement CATdd. CATdd only supports a
project that is implemented in C++ and runs tests in
GoogleTest.

SUGISAKA
MASANORI

Journal of Advances in Artificial Life Robotics
Vol. 4(1); June (2023), pp. 35–40

ON LINE ISSN 2435-8061; ISSN-L 2435-8061
https://alife-robotics.org/jallr.html

http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

36

2. CATdd

CATdd is a framework to support continuous software
development with TDD. CATdd runs tests on the target
project and generates source code that can pass the tests
based on the source code that failed the tests, maintaining
the consistency in the project by using LLM. In this
process, CATdd refers to another source code that is
loaded by the source code to be tested as a related source
code. To generate source code with CATdd, the
developer must pre-set 5 data in catdd.yaml: the source
code path, the test execution path, the test execution
command, the programming language used in the project,
and the language of comments when generating source
code.

3. Implementation

The structure of CATdd is shown in Fig. 1. As shown in
Fig. 1, CATdd has 5 processing sections: Test Runner,
Test Result Analyzer, Source Code Searcher, Test Code
Analyzer, and Source Code Generator. The behavior of
each processing section is described below.

3.1. Test Runner

Test Runner runs tests on the project supported by
CATdd using the test execution path and test execution
commands in catdd.yaml, and redirects the test results to
a log file. The log file of the test results is sent to the Test
Result Analyzer.

3.2. Test Result Analyzer

Test Result Analyzer extracts data about failed test cases
from the test results received from the Test Runner. Test
Result Analyzer extracts failed test cases that match the
pre-defined regular expression patterns for assertion
errors and the 3 errors: “No such file”, “has no member”,
and “undefined”. The extracted test cases data is sent to
Source Code Searcher and Test Code Analyzer.

3.3. Source Code Searcher

Source Code Searcher searches for source files based on
the class names that failed to pass the test from the
information received from the Test Result Analyzer. If a
source file is found, the header file that the source file
includes is also searched. The source code of the
discovered file is passed to the Source Code Generator.
In this prototype, only the header file of the class to be
tested was the target of the search. If no files are found,
empty character is sent to the Source Code Generator.

Fig. 1 The Structure of CATdd

37

3.4. Test Code Analyzer

Test Code Analyzer extracts the test code for the failed
test cases based on the test code line numbers received
from the Test Result Analyzer and sends it to the Source
Code Generator.

3.5. Source Code Generator

Source Code Generator generates prompts for source
code that pass testing and maintain consistency with the
related source code, based on code received from Source
Code Searcher and Test Code Analyzer. Then, Source
Code Generator sends the generated prompts to the
OpenAI API [6] for generating the source code. This
prototype uses the text-davinci-003 model. Source Code
Generator generates 2 files, a source file (.cpp) and a
header file (.h), for the target of the failed test.
 The syntax of the prompt is shown in Fig. 2. The data
composing the prompt, the programming language and
the language of comments, are taken from the
configuration file catdd.yaml, the class name of the failed
test target, the existing source code, and the related
source code are taken from the Source Code Searcher,
and the test code of the failed test is taken from the Test
Code Analyzer.

The sending the prompt to the OpenAI API has a
problem, the request is rejected if the number of tokens
is over the limit [6]. To solve the problem, Source Code
Generator ranks the data that makes the prompt in order
of priority and reduces them in the order of decreasing
priority. The data is reduced in the following order:
comments in the relevant source code, comments in the
source code that failed to pass existing tests, failed test

Fig. 3. Part of the Test Code

cases, relevant source code, source code that failed to
pass existing tests. In the reducing data for failed test
cases, at least one of the failed test cases is included in
the prompt. When the number of tokens is below the
limit, Source Code Generator generates the prompt and
sends it to the OpenAI API for source code generation.
Finally, Source Code Generator writes the generated
source code to a file on the project. If the number of
tokens is over the limit after reducing all the data, Source
Code Generator notifies the developer and exits the
process.

4. Application Example

To confirm that the prototype CATdd works as expected,
using an application example. In an empty project
supported by CATdd, test code and header files were
manually described for the Mileage class that calculates
the movement distance from the rotation angles of both
wheels, and generated source code by CATdd. A part of
the test code and the header file used to generate the
source code are shown in Fig. 3 and Fig. 4, and the
source file generated by CATdd is shown in Fig. 5. After
source code generation, the project passed all tests. This
confirms that CATdd can generate source code that can
pass tests. Also, Fig. 5 shows that CATdd implemented
the private function “calculateWheelMileage()”, which is
not described in the test code, by using the header file
shown in Fig. 4 for the source code generation. This
confirms that CATdd can maintain consistency with
other source code in the project by using source code
related to the target of generation as input.

Implement the source code for class {Class Name of Failed Test}
that satisfies the following conditions using {Programing
Language} with {Language of Comments} comments.
- Only the source file must be implemented out of the two files,
header file and source file.
- Satisfy all of the following test cases. However, it is not
necessary to run the tests.
{Test Code for Failed Test}
- Based on the following source code.
{Existing Source Code}
- Based on the following header file.
{Related Source Code}

TEST(calculateMileageTest, calculateMilage)
{

double radius = 50;
double rightAngle = 10;
double leftAngle = 20;
double rightWheel = 2 * rightAngle * radius * M PI / 360;
double leftWheel = 2 * leftAngle * radius * M PI / 360;
double expected = (rightWheel + leftWheel) / 2;
double actual = Mileage::calculateMileage(rightAngle,

leftAngle);
EXPECT DOUBLE EQ(expected, actual);

}

Fig. 2. The Syntax of Prompt

38

Fig. 4. Described Header File

Fig. 5. Generated Source Code By CATd

5. Evaluation

We evaluate the effective of the time of implementation
step in TDD by comparing the implementation with and
without CATdd in the experiment. 7 students majoring in
computer science and engineering, 4 graduate students
and 3 undergraduates, participated in the experiment as
subjects. They solved 2 tasks using TDD. 4 subjects used
CATdd for only the first task, and other subjects used
CATdd for only the second task.

Table 1. The Average Implementation Time per Person

The first task is to implement a Mileage class that

calculates the movement distance from the rotation
angles of both wheels. This task is simple and can be
implemented with about 30 lines of source code for 5 test
cases. The second task is to implement the member
function calculatePid() of the Pid class that executes PID
control. This task is more complex and can be
implemented with about 20 lines of additional source
code, for 8 test cases and about 50 lines of existing source
code. The test code was created by the experimenter and
all test cases were commented out.

In the experiment, subjects executed the following
steps: uncomment a test case, run the test to check the
results, implement source code that pass the test, refactor
if necessary, and repeat these steps until the task is
completed. Additionally, after completing both tasks,
they submitted feedback on using CATdd.

5.1. Evaluation of Implementation Time

The average implementation time per person for each
combination of task and implementation method is
shown in Table 1. Table 1 shows that CATdd reduced the
time of implementation by 84m14s (94%) for the first
task and by 56m55s (56%) for the second task. This
indicates that CATdd is useful for reducing time of
implementation step in TDD.

5.2. Evaluation of the Generated Source Code

During the experiment, CATdd generated source code
that passed most tests. On the other hand, CATdd
generated source code that failed to consider the pattern
and did not pass the test, even though there was a test case
for division by zero. Also, during the experiment, the
generated source code was sometimes not source code or
contained errors that CATdd did not support. Generating
incorrect source code increases developer effort and
development time. To improve the quality of generated
source code, it is necessary to increase the quantity and
quality of information used for source code generation.

5.3. Evaluation of Usefulness by Questionnaire

Subjects answered what was good and bad about CATdd
after the task was completed.

#ifndef MILEAGE_H
#define MILEAGE_H
#include <cmath>
class Mileage {
 public:
 /**
 * @brief Calculate mileage of both wheel
 * @param rightAngle Right motor angle [deg]
 * @param leftAngle Left motor angle [deg]
 * @return Mileage of both wheel [mm]
 */
 static double calculateMileage(int rightAngle, int leftAngle);

 private:
 static const double RADIUS;
 Mileage();

 /**
 * @brief Calculate mileage of a wheel
 * @param angle Motor angle of a wheel [deg]
 * @return Mileage of a wheel [mm]
 */
 static double calculateWheelMileage(int angle);
};
#endif

// Mileage.cpp
// Implementation of Mileage class
#include "Mileage.h"
// Constructor
Mileage::Mileage() {}
double Mileage::calculateMileage(int rightAngle, int leftAngle) {
 double rightWheel = calculateWheelMileage(rightAngle);
 double leftWheel = calculateWheelMileage(leftAngle);
 return(rightWheel + leftWheel) / 2;
}
double Mileage::calculateWheelMileage(int angle) {
 return 2 * angle * RADIUS * M_PI / 360;
}

Method 1st Task 2nd Task
Manual 89m33s 101m16s
CATdd 5m19ss 44m21s

39

As good points, 5 of the 7 subjects mentioned that the
task was easier, and 3 mentioned that they were able to
implement it faster. In addition, the comments generated
automatically were useful, and the number of
implementation errors was reduced. On the other hand,
as bad points, 3 of the 7 subjects were able to implement
without understanding the source code generated
automatically, and 2 subjects found it difficult to
understand what changes had been made due to the
automatic generation. In addition, they also mentioned
the time and effort required to delete unnecessary code,
change variable names, etc., which is not required in
manual development.
 From these answers, it can be said that CATdd is
useful in reducing development time in TDD.

5.4. Related Research

One research that automatically generates source code is
CodeT developed by Chen et al [4]. CodeT generates
source code using natural language requests as input. In
addition, it also generates test code and evaluates the
generated source code when it generates source code.
However, CodeT needs to re-generate source code with
new requirements as input when the requirements are
changed. On the other hand, CATdd uses the existing
source code as input and can generate new source code
maintaining the changes made by the developer's
refactoring. Since minor modifications by the developer
are retained in the next source code generation, CATdd
can support continuous development.

One research of APR (Automated Program Repair),
which automatically corrects test failures and errors, is
the work of Chunqiu et al [5]. In this study, they proposed
a conversational APR that alternates between generating
patches and executing tests using LLMs. Conversational
APR generates new patches by taking as input a program
containing bugs, test cases, and previously generated
patches and test results for those patches. Repeated input
of previously generated patches and test results to the
model prevents the generation of patches that have
already been generated. However, since only one
program is used as input, it does not support processes
that can be realized by multiple programs. On the other
hand, CATdd uses the related source code loaded in the
source code as input for source code generation, in
addition to the failed tests and the source code to be
tested. By using the related source code, CATdd
improves the possibility of generating source code with
consistency within the project.

6. Conclusion

We have prototyped the framework CATdd, which
supports continuous development with TDD. Using the
application example, we have confirmed that CATdd can
maintain consistency with other source code in the
project. As a result of the evaluation experiments, the
time for the implementation step in TDD was reduced by
94% for simple task and by 56% for more complex task.
In addition, the questionnaire showed that CATdd is
useful in reducing implementation time and human error.
In conclusion, CATdd is useful to support continuous
development in TDD.

Our future tasks are shown below.
 Improve quality of generated source code
 Extend range of related source code support
 Guide to automatically generated code

References

1. “BBC: What went wrong inside Boeing’s cockpit?”
https://www.bbc.co.uk/news/extra/IFtb42kkNv/boeing-
two-deadly-crashes#group-System-failurezAFs52mVNd
(Accessed 2023-9-3).

2. Rafique, Y., and Miˇsi´c, V., “The Effects of Test-
DrivenDevelopment on External Quality and Productivity:
AMeta-Analysis”, IEEE Transactions on Software
Engineering, Vol.39, No.6, pp.835-856, 2013.

3. Anwer, F., Aftab, S., Waheed, U., et al., “Agile
SoftwareDevelopment Models TDD, FDD, DSDM, and
CrystalMethods: A Survey”, International Journal of
MultidisciplinarySciences and Engineering, Vol.8, No.2
pp.1-10, 2017.

4. Chen, B., Zhang, F., Nguyen, A., et al., “CodeT: Code
Generation with Generated Tests”, The Eleventh
International Conference on Learning Representations
2023 poster, 19p. 2023.

5. Xia, C.S. and Zhang, L., “Conversational Automated
Program Repair”, arXiv:2301.13246, 11p, 2023

6. “OpenAI: OpenAI API Documentation”,
https://platform.openai.com/docs/introduction, (Accessed
2023-7-31)

Authors Introduction

Mr. Takeaki Miyashita
He received the Bachelor's degree in
engineering (computer science and
systems engineering) from the
University of Miyazaki, Japan in 2022.
He is currently a Master's student in
Graduate School of Engineering at the
University of Miyazaki, Japan. His
research interests software testing and

software quality.

https://www.bbc.co.uk/news/extra/IFtb42kkNv/boeing-two-deadly-crashes#group-System-failurezAFs52mVNd
https://www.bbc.co.uk/news/extra/IFtb42kkNv/boeing-two-deadly-crashes#group-System-failurezAFs52mVNd
https://www.bbc.co.uk/news/extra/IFtb42kkNv/boeing-two-deadly-crashes#group-System-failurezAFs52mVNd
https://www.bbc.co.uk/news/extra/IFtb42kkNv/boeing-two-deadly-crashes#group-System-failurezAFs52mVNd
https://ieeexplore.ieee.org/document/6197200
https://ieeexplore.ieee.org/document/6197200
https://ieeexplore.ieee.org/document/6197200
https://ieeexplore.ieee.org/document/6197200
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2301.13246
https://arxiv.org/abs/2301.13246
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction

40

Dr. Tetsuro Katayama
He received a Ph.D. degree in
engineering from Kyushu University,
Fukuoka, Japan, in 1996. From 1996 to
2000, he has been a Research
Associate at the Graduate School of
Information Science, Nara Institute of
Science and Technology, Japan. Since
2000 he has been an Associate

Professor at the Faculty of Engineering, Miyazaki
University, Japan. He is currently a Professor with the
Faculty of Engineering, University of Miyazaki, Japan.
His research interests include software testing and quality.
He is a member of the IPSJ, IEICE, and JSSST.

Dr. Yoshihiro Kita

He received a Ph.D. degree in systems
engineering from the University of
Miyazaki, Japan, in 2011. He is
currently an Associate Professor with
the Faculty of Information Systems,
University of Nagasaki, Japan. His
research interests include software
testing and biometrics authentication.

Dr. Hisaaki Yamaba

He received the B.S. and M.S. degrees
in chemical engineering from the
Tokyo Institute of Technology, Japan,
in 1988 and 1990, respectively, and the
Ph D. degree in systems engineering
from the University of Miyazaki, Japan
in 2011. He is currently an Assistant
Professor with the Faculty of

Engineering, University of Miyazaki, Japan. His research
interests include network security and user authentication.
He is a member of SICE and SCEJ.

Dr. Kentaro Aburada

He received the B.S., M.S, and Ph.D.
degrees in computer science and
system engineering from the
University of Miyazaki, Japan, in
2003, 2005, and 2009, respectively.
He is currently an Associate
Professor with the Faculty of
Engineering, University of

Miyazaki, Japan. His research interests include computer
networks and security. He is a member of IPSJ and IEICE.

Dr. Naonobu Okazaki
He received his B.S, M.S., and Ph.D.
degrees in electrical and
communication engineering from
Tohoku University, Japan, in 1986,
1988 and 1992, respectively. He
joined the Information Technology
Research and Development Center,
Mitsubishi Electric Corporation in
1991. He is currently a Professor with

the Faculty of Engineering, University of Miyazaki since
2002. His research interests include mobile network and
network security. He is a member of IPSJ, IEICE and
IEEE.

	ARTICLE INFO
	1. Introduction
	2. CATdd
	3. Implementation
	3.1. Test Runner
	3.2. Test Result Analyzer
	3.3. Source Code Searcher
	3.4. Test Code Analyzer
	3.5. Source Code Generator

	4. Application Example
	5. Evaluation
	5.1. Evaluation of Implementation Time
	5.2. Evaluation of the Generated Source Code
	5.3. Evaluation of Usefulness by Questionnaire
	5.4. Related Research

	6. Conclusion
	References

