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ABSTR AC T  
This paper discusses quasi-static grasp stability of frictionless enveloping grasps in two 
dimensions. The stability is investigated from the viewpoint of potential energy stored in the 
grasps. The system of the grasps is replaced with elastic property, in which joint position and link 
surface properties are represented by linear stiffness. The contact constraints between a grasped 
object and finger links are formulated. The potential energy of the grasp system is obtained from 
the stiffness and the joint and link surface displacements. A wrench (i.e., force and moment) 
vector and a stiffness matrix of the grasp system are derived from partial differentiations by the 
pose (i.e., translation and rotation) displacement of the object. The grasps are stable if both the 
wrench vector is zero and the matrix is positive definite. The stability is evaluated by the 
eigenvalues of the matrix. Since, in this paper, the wrench vector and the stiffness matrix are 
derived in an analytical way, the matrix is given as a function of grasp positions, grasp forces, 
local curvatures, joint and surface stiffnesses, and so on at contact points, explicitly. We 
investigate curvature and stiffness effects on the grasp system by partially differentiating the 
matrix by the curvatures and stiffnesses. The positive definiteness of the matrix differentiations 
is analyzed. Validity of our analysis is confirmed through numerical examples. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                    This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/). 

 

1. Introduction 

Dexterous and flexible hands are inherent in human 
beings. The hands can grasp and manipulate objects of 
various shapes skillfully. In various fields like as 
production lines including assembly tasks, picking tasks, 
handling tasks, and so on, manual handworks by skillful 
workers are remained. Human hands are utilized for not 
only parts handling but also drilling and screw tightening 
with some tools. However, the handworks will be able to 
become bottlenecks in the production lines. Therefore, 
the human-like advanced technologies and 
methodologies are required for robots in mechanical 
functions.  

Various types of grasp forms can be imagined like as 
pinching, enveloping, hooking, and so on. To avoid 

squeezing, slipping out, breaking the parts, appropriate 
grasp forms (i.e., grasp types, grasp positions, grasp 
forces, etc.) are determined from the various types of 
grasps. 

In order to obtain suitable grasps, machine learning 
methods are tackled in recent years. Siddiqui et al. [1], Li 
et al. [2], and Dong et al. [3] discussed grasp stability 
based on large amount of experimental data acquired 
from vision and/or force sensor. In general, the learning 
methods require strong CPU power, large amount of 
training data, and so on. 

On the other hands, in traditional methodologies, grasp 
and manipulation of objects by multi-fingered hands are 
tackled from the viewpoint of mechanics, kinematics, 
statics, and dynamics in details. As one of the methods, 
Hanafusa et al. [4] and Nguyen [5] proposed a concept of 
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grasp stability. The stability was investigated from the 
viewpoint of potential energy stored in the grasp system. 
In the system, every finger displacement was replaced 
with linear elastic property. The stability expresses the 
index whether or not the grasp system returns to its initial 
pose (i.e., position and orientation) after external 
disturbance disappears. Watanabe [6] and Dong et al. [7] 
attacked effects of softness at contact points. In Ref. [8], 
we explored grasp stability of two spatial objects. 
Contact surface geometry (i.e., curvature, torsion, and 
metric tensor) was considered. Ref. [9] explored grasp 
stability of pinching grasps in which each finger is 
constructed of three revolute or prismatic joints. Effects 
of local curvatures on the stability were also tackled. Ref. 
[10] investigated grasp position effects on the grasp 
stability and proposed an algorithm for automatic 
generation of optimal grasp. In grasp forms, there are 
pinching grasps by fingertips, enveloping grasps by 
finger link surfaces, and so on. Refs. [4], [10] explored 
pinching grasps. 

 

 
Figure 1: An enveloping grasp in two dimensions 

 
In this paper, we explore quasi-static grasp stability of 

frictionless enveloping grasps in two dimensions (Figure 
1). The grasp systems are analyzed by replacing joint 
position displacement and finger surface displacement 
with elastic model. In Section 2, displacement parameters, 
potential energies, and contact constraints are formulated. 
In Section 3, partial derivatives of the potential energy 
are derived. In Section 4, frictionless conditions at 
contact points are formulated and the wrench vector and 
stiffness matrix of the grasp system are derived. By using 
the eigenvalues of the matrix, the grasp stability is 
evaluated. In our formulation, the wrench and matrix are 
analytically derived, it is explicitly shown that the matrix 
is given as a function of grasp positions, grasp forces, 
local curvatures, joint and surface stiffnesses, and so on 
at contact points. In Section 5, we analyze curvature and 

stiffness effects on the grasp system by partially 
differentiating the matrix by the curvatures and 
stiffnesses. In Section 6, we show a numerical example 
to confirm validity of our analysis. In Section 7, we show 
our conclusion. 

2. Problem Formulation, 

An object is enveloped by an m-fingered hand of which 
each finger consists of n-joints and links. We suppose 
that every link of the fingers is in contact with the object 
and the number of contact points of each link is one. Both 
every link and object surfaces are curved at the contact 
point but not overlapped each other. 
 

 
Figure 2: Object and finger coordinate frames  
 

2.1. Notations 

Finger number is denoted as 𝑖𝑖  (𝑖𝑖 = 1, 2,⋯ ,𝑚𝑚) , and 
joint and link number is denoted as 𝑗𝑗 (𝑗𝑗 = 1, 2,⋯ ,𝑛𝑛). As 
shown in Figure 2, some coordinates are defined as 
follows:  
Σ𝑏𝑏: Base coordinate frame of the grasp system. 
Σ𝑜𝑜: Object coordinate frame fixed on the object. 
Σ𝑏𝑏𝑜𝑜: Initial pose of Σ𝑜𝑜. 
Σ𝑖𝑖0: Base coordinate frame of the i-th finger. 
Σ𝑖𝑖𝑖𝑖: Joint and link coordinate frame of the j-th joint of 

the i-th finger. 
Σ𝑏𝑏𝑖𝑖𝑖𝑖: Initial pose of Σ𝑖𝑖𝑖𝑖 . 
Σ𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖 , Σ𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖:  Contact coordinate frames on the object 

and finger surfaces, respectively. 
Σ𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖 , Σ𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 : Initial poses of Σ𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖  and Σ𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 , 

respectively. 
 Σ𝑝𝑝𝑖𝑖𝑖𝑖: Deformed coordinate frame of Σ𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 . 



 

48 
 

In Appendix A, we show vectors and matrices used in 
the following sections. 

2.2. Displacements of joint position and finger 
surface  

In this subsection, we explain position of each finger 
joint and pose of each finger link surface. 

Configurations of the finger links are represented by 
positions of the finger joints. We define position of the j-
th joint as symbol 𝑞𝑞𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ, which is represented as the 
following components: 
𝑞𝑞𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖 , (𝑗𝑗 = 1, 2,⋯ , 𝑛𝑛) (1) 

�
𝑞𝑞𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖 Natural component
𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖 Compressed component by the initial force
𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖 Displaced component by the object displacement

 

The relative pose of Σ𝑖𝑖𝑖𝑖  with respect to Σ𝑖𝑖(𝑖𝑖−1)  is 
represented as the following homogeneous 
transformation matrix: 

𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖(𝑖𝑖−1) �𝑞𝑞𝑎𝑎𝑖𝑖𝑖𝑖�

= �
𝐴𝐴𝑏𝑏𝑖𝑖𝑖𝑖

𝑖𝑖(𝑖𝑖−1) �𝑞𝑞𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖�𝐴𝐴𝑟𝑟�𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖� for revolute joint

𝐴𝐴𝑏𝑏𝑖𝑖𝑖𝑖
𝑖𝑖(𝑖𝑖−1) �𝑞𝑞𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖�𝐴𝐴𝑡𝑡�𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖𝒖𝒖1� for prismatic joint

 

(𝒋𝒋 = 𝟏𝟏,𝟐𝟐,⋯ ,𝒏𝒏) (𝟐𝟐) 

The link surface is in contact on the object. We suppose 
that deformation of the link surface is approximated as 
the pose displacement of the surface coordinate. We 
define the deformation as symbol 𝒒𝒒𝑝𝑝𝑖𝑖𝑖𝑖 ∈ ℝ3 , which is 
represented as the following components: 

𝒒𝒒𝑝𝑝𝑖𝑖𝑖𝑖 = 𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖 + 𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖 ∈ ℝ3, (𝑗𝑗 = 1,2,⋯ , 𝑛𝑛)   (3) 

�
𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖 Compressed component by the initial force
𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖 Displaced component by the object displacement 

The relative pose of Σ𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖  with respect to Σ𝑖𝑖𝑖𝑖  is 
represented by the following homogeneous 
transformation matrix: 

𝐴𝐴𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 �𝒒𝒒𝑝𝑝𝑖𝑖𝑖𝑖� ≔ 𝐴𝐴𝑝𝑝𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖 �𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖�𝐴𝐴𝑡𝑡𝑟𝑟�𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖� (4) 
As a result, displacement parameters on the j-th link are 
summarized as the following vector: 

𝒒𝒒𝑑𝑑𝑖𝑖𝑖𝑖 ≔ �𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖 ,𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇 �𝑇𝑇 ∈ ℝ4 (5) 

2.3. Potential energy of the grasp 

We define an elastic coefficient of the joint position 
displacement as 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ and the potential energy of the 
j-th joint as 

𝑈𝑈𝑎𝑎𝑖𝑖𝑖𝑖�𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖� ≔
1
2
𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖�𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖�

2
  (6) 

Initial joint torque 𝜏𝜏𝑎𝑎𝑖𝑖𝑖𝑖 ∈ ℝ is formulated as 
𝜏𝜏𝑎𝑎𝑖𝑖𝑖𝑖 ≔ 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖  (7) 

The coefficient 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖 is generated by some joint stiffness 
control and then is changeable. The torque 𝜏𝜏𝑎𝑎𝑖𝑖𝑖𝑖  is also 
changeable by adjusting 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖  and 𝑞𝑞𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖. 

We define a stiffness coefficient of the elasticity of the 
link surface displacement as 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 ∈ ℝ3×3  and the 
potential energy of the j-th link of the i-th finger as  

𝑈𝑈𝑝𝑝𝑖𝑖𝑖𝑖�𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖� ≔
1
2
�𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖 + 𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖�

𝑇𝑇𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖�𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖 + 𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖� 

(8) 
Initial contact force 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖 is formulated as 

𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖 ≔ 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖𝒒𝒒𝑐𝑐𝑝𝑝𝑖𝑖𝑖𝑖  (9) 
The coefficient matrix 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 is inherent in the mechanical 
surface property. 

We obtain the potential energy of the i-th finger as 

𝑈𝑈𝑖𝑖(𝒒𝒒𝑑𝑑𝑖𝑖) ≔� �𝑈𝑈𝑎𝑎𝑖𝑖𝑖𝑖�𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖� + 𝑈𝑈𝑝𝑝𝑖𝑖𝑖𝑖�𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖��
𝑛𝑛

𝑖𝑖=1
 (10) 

where the symbol 𝒒𝒒𝑑𝑑𝑖𝑖  is defined as the following vector.  
𝒒𝒒𝑑𝑑𝑖𝑖 ≔ [𝒒𝒒𝑑𝑑𝑖𝑖1𝑇𝑇 ,⋯ ,𝒒𝒒𝑑𝑑𝑖𝑖𝑛𝑛𝑇𝑇 ]𝑇𝑇 ∈ ℝ4𝑛𝑛 (11) 

Since the number of fingers is denoted as 𝑚𝑚, we obtain 
the potential energy of the grasp system as 

𝑈𝑈(𝒒𝒒𝑑𝑑) ≔� 𝑈𝑈𝑖𝑖(𝒒𝒒𝑑𝑑𝑖𝑖)
𝑚𝑚

𝑖𝑖=1
, 𝒒𝒒𝑑𝑑 ≔ [𝒒𝒒𝑑𝑑1𝑇𝑇 ,⋯ ,𝒒𝒒𝑑𝑑𝑚𝑚𝑇𝑇 ]𝑇𝑇 

(12) 

2.4. Contact constraints of the object and finger 
link surfaces 

Since the j-th link surface is in contact on the object, 
the contact constraint is given by the following formula. 

𝐴𝐴𝑏𝑏𝑜𝑜𝑏𝑏 𝐴𝐴𝑜𝑜𝑏𝑏𝑜𝑜 (𝜺𝜺𝑜𝑜) 𝐴𝐴𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜 𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖�𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖�
𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖  

= 𝐴𝐴𝑖𝑖0𝑏𝑏 𝐴𝐴𝑖𝑖1𝑖𝑖0 (𝑞𝑞𝑎𝑎𝑖𝑖1) × ⋯× 𝐴𝐴𝑖𝑖𝑖𝑖
𝑖𝑖(𝑖𝑖−1) �𝑞𝑞𝑎𝑎𝑖𝑖𝑖𝑖� 

× 𝐴𝐴𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 �𝒒𝒒𝑝𝑝𝑖𝑖𝑖𝑖� 𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖� 𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  

(𝑗𝑗 = 1,2,⋯ ,𝑛𝑛) (13) 
The parameter 𝜺𝜺𝑜𝑜 ∈ ℝ3 denotes pose (i.e., position and 
orientation) displacement of the object. The parameters 
𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖 ∈ ℝ  and 𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖 ∈ ℝ  denote the contact point 
displacements on the object and link surfaces, 
respectively. 

𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖
𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖 �𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖� ≔ 𝐴𝐴𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖 𝐴𝐴𝑟𝑟�𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖� 𝐴𝐴𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖−1𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖  
𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖� ≔ 𝐴𝐴𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝐴𝐴𝑟𝑟�𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖� 𝐴𝐴𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖−1𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖  

(14) 
where the matrices 𝐴𝐴𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖  and 𝐴𝐴𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖  are defined as 

the following forms: 
𝐴𝐴𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖 ≔ 𝐴𝐴𝑡𝑡�−𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖−1𝒖𝒖1�, 𝐴𝐴𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 ≔ 𝐴𝐴𝑡𝑡�−𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖−1𝒖𝒖1� 

(15) 
Local curvature at contact point is denoted as 𝜅𝜅. If the 
curvature 𝜅𝜅 is positive, zero, or negative, then the surface 
is convex, flat, or concave, respectively. Because of no 
overlapping between the object and finger link surfaces, 
we have 𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖 + 𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖 > 0. Since the link surface contacts 
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on the object surface, the relation between Σ𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖  and 
Σ𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖  is given as 

𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑟𝑟(𝜋𝜋) (16) 

From the contact constraint (13), we obtain 
𝐴𝐴𝑡𝑡𝑟𝑟�𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖� = 𝐴𝐴𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑖𝑖 𝐴𝐴𝑖𝑖𝑖𝑖−1
𝑖𝑖(𝑖𝑖−1) �𝑞𝑞𝑎𝑎𝑖𝑖𝑖𝑖� × ⋯ 

× 𝐴𝐴𝑖𝑖1−1𝑖𝑖0 (𝑞𝑞𝑎𝑎𝑖𝑖1) 𝐴𝐴𝑏𝑏𝑜𝑜𝑖𝑖0 𝐴𝐴𝑜𝑜𝑏𝑏𝑜𝑜 (𝜺𝜺𝑜𝑜) 𝐴𝐴𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜  
× 𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖

𝐿𝐿𝑜𝑜𝑖𝑖𝑖𝑖 �𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖� 𝐴𝐴𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖−1𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 𝐴𝐴𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖−1𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖� 
(17) 

The surface displacement 𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖  depends on the object 
displacement 𝜺𝜺𝑜𝑜, joint position displacement 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑑𝑑  (𝑘𝑘 =
1,2,⋯ , 𝑗𝑗), and contact position displacement 𝜶𝜶𝑖𝑖𝑖𝑖. 

𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖�𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖1,⋯ , 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖�, 
(𝑗𝑗 = 1,2,⋯ ,𝑛𝑛) (18) 

where the symbol 𝜶𝜶𝑖𝑖𝑖𝑖 is defined as the following vector. 

𝜶𝜶𝑖𝑖𝑖𝑖 ≔ �
𝛼𝛼𝑜𝑜𝑖𝑖𝑖𝑖
𝛼𝛼𝐶𝐶𝑖𝑖𝑖𝑖 � ∈ ℝ

2 (19) 

Consequently, the energy (10) is transformed to 
𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖) ≔

= � �𝑈𝑈𝑎𝑎𝑖𝑖𝑖𝑖�𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

+ 𝑈𝑈𝑝𝑝𝑖𝑖𝑖𝑖 �𝒒𝒒𝑑𝑑𝑝𝑝𝑖𝑖𝑖𝑖�𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖1 ,⋯ , 𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖��� 
(20) 

where the symbols 𝜶𝜶𝑖𝑖  and 𝜷𝜷𝑖𝑖  are defined as the 
following vectors: 

𝜶𝜶𝑖𝑖 ≔ �
𝜶𝜶𝑖𝑖1
⋮
𝜶𝜶𝑖𝑖𝑛𝑛

� ∈ ℝ2𝑛𝑛, 𝜷𝜷𝑖𝑖 ≔ �
𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖1
⋮

𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑛𝑛
� ∈ ℝ𝑛𝑛 (21) 

3. Partial derivatives of the potential energy 

3.1. The first partial derivatives 

In this subsection, we show the first partial derivatives 
of the potential energy by 𝜺𝜺𝑜𝑜, 𝜶𝜶𝑖𝑖, and 𝜷𝜷𝑖𝑖. Considering the 
initial condition, we have the following vectors: 

𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀 ≔
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜
�
0

= � 𝐵𝐵𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
∈ ℝ3 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼 ≔
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜶𝜶𝑖𝑖
�
0

= �
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼1
⋮

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑛𝑛

� ∈ ℝ2𝑛𝑛 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽 ≔
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜷𝜷𝑖𝑖
�
0

= �
𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖1
⋮

𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑛𝑛

� ∈ ℝ𝑛𝑛 

(22) 
where the elements 𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑘𝑘 and 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑘𝑘 are obtained as 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑘𝑘 ≔
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜶𝜶𝑖𝑖𝑑𝑑
�
0

= 𝐾𝐾𝑖𝑖𝑑𝑑𝑇𝑇 𝝉𝝉𝑝𝑝𝑖𝑖𝑑𝑑 ∈ ℝ2 

𝐾𝐾𝑖𝑖𝑑𝑑 ≔ �
−𝒖𝒖2 −𝒖𝒖2
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 −𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑� ∈ ℝ

3×2 

𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑘𝑘 ≔
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)

𝜕𝜕𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑑𝑑
�
0

= 𝜏𝜏𝑎𝑎𝑖𝑖𝑑𝑑 − 𝒗𝒗𝜁𝜁𝑇𝑇� 𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑑𝑑
∈ ℝ 

(23) 
The detailed derivations are omitted for page space. 

3.2. The second partial derivatives 

In this subsection, we show the second partial 
derivatives of the potential energy by 𝜺𝜺𝑜𝑜 , 𝜶𝜶𝑖𝑖 , and 𝜷𝜷𝑖𝑖 . 
Considering the initial condition, we have the following 
matrices: 

𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜺𝜺𝑜𝑜𝑇𝑇
�
0
 

= � � 𝐵𝐵𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 𝐵𝐵𝑜𝑜

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 + 𝒗𝒗𝜁𝜁� 𝒑𝒑𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝐼𝐼23𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖�𝒗𝒗𝜁𝜁𝑇𝑇�

𝑛𝑛

𝑖𝑖=1
∈ ℝ3×3 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝜀𝜀
𝑇𝑇 = 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼 ≔

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇

�
0
 

= [𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼𝑛𝑛] ∈ ℝ3×2𝑛𝑛 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝜀𝜀
𝑇𝑇 = 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛽𝛽 ≔

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇

�
0
 

= [𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝑖𝑖1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝑖𝑖𝑛𝑛] ∈ ℝ3×𝑛𝑛 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛼𝛼 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜶𝜶𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇
�
0
 

= �
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼1𝛼𝛼1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼1𝛼𝛼𝑛𝑛

⋮ ⋱ ⋮
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑛𝑛𝛼𝛼1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑛𝑛𝛼𝛼𝑛𝑛

� ∈ ℝ2𝑛𝑛×2𝑛𝑛 

𝑈𝑈𝑖𝑖𝑞𝑞,𝛼𝛼𝛼𝛼
𝑇𝑇 = 𝑈𝑈𝑖𝑖𝑞𝑞,𝛼𝛼𝛼𝛼 ≔

𝜕𝜕2𝑈𝑈𝑖𝑖𝑞𝑞�𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖�
𝜕𝜕𝜷𝜷𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖

𝑇𝑇 �
0

 

= �
𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖1𝛼𝛼1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖1𝛼𝛼𝑛𝑛

⋮ ⋱ ⋮
𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑛𝑛𝛼𝛼1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑛𝑛𝛼𝛼𝑛𝑛

� ∈ ℝ𝑛𝑛×2𝑛𝑛 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛽𝛽 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜷𝜷𝑖𝑖𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇
�
0
 

= �
𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖1𝑖𝑖1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖1𝑖𝑖𝑛𝑛

⋮ ⋱ ⋮
𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑛𝑛𝑖𝑖1 ⋯ 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛

� ∈ ℝ𝑛𝑛×𝑛𝑛 

(24) 
The details of the elements are shown in Appendix B. 

4. Enveloping grasps with frictionless sliding 
contact 

4.1. Frictionless constraints at contacts 

Since the finger link surface is in contact on the object 
with frictionless sliding, the contact point displacement 
𝜶𝜶𝑖𝑖 and the joint position displacement 𝜷𝜷𝑖𝑖 have to locally 
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minimize the energy. Consequently, the following 
constraints are handled: 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜶𝜶𝑖𝑖

= 02𝑛𝑛 (25.1) 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜷𝜷𝑖𝑖

= 0𝑛𝑛 (25.2) 

From (25.1) at the initial condition, we have 𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑘𝑘 = 02. 
Using (23), we have the following contact force: 

𝝉𝝉𝑝𝑝𝑖𝑖𝑑𝑑 = 𝐼𝐼23𝑇𝑇 𝒇𝒇𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 , 𝒇𝒇𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 = �
𝑓𝑓𝑥𝑥

𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑

𝑓𝑓𝑦𝑦
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 � ∈ ℝ2, 

𝑓𝑓𝑥𝑥
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 < 0, 𝑓𝑓𝑦𝑦

𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 = 0 
(26) 

The symbol 𝑓𝑓𝑥𝑥
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑  and 𝑓𝑓𝑦𝑦

𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑  are normal and tangential 
components of the contact force, respectively. Because 
the contact force 𝒇𝒇𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑  is represented in the frame Σ𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑, 

𝑓𝑓𝑥𝑥
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑  is negative. From (25.2) at the initial condition, we 
have 𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑘𝑘 = 0. Using (23), we have the following joint 
torque: 

𝜏𝜏𝑎𝑎𝑖𝑖𝑑𝑑 = 𝒗𝒗𝜁𝜁𝑇𝑇� 𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑑𝑑
 (27) 

Since (25) has 3𝑛𝑛 constraints, the number of independent 
parameters of the grasp system is reduced to three. 
Finally, the displacements 𝜶𝜶𝑖𝑖  and 𝜷𝜷𝑖𝑖  are given by 
functions of the parameter 𝜺𝜺𝑜𝑜. 

𝑈𝑈𝑖𝑖𝑖𝑖
𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜) ≔ 𝑈𝑈𝑖𝑖𝑖𝑖�𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖(𝜺𝜺𝑜𝑜),𝜷𝜷𝑖𝑖(𝜺𝜺𝑜𝑜)� (28) 

Considering (25), the following gradient is obtained. 

𝐺𝐺𝑖𝑖
𝐶𝐶𝑓𝑓 ≔

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖
𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜)
𝜕𝜕𝜺𝜺𝑜𝑜

�
0

= � 𝑊𝑊𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖
𝑜𝑜 𝒇𝒇𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (29) 

Deriving partial derivative of (25) by the object 
displacement 𝜺𝜺𝑜𝑜, we have the following formula: 

𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 ≔ �

𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇

𝜕𝜕𝜺𝜺𝑜𝑜
�
0

𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇

𝜕𝜕𝜺𝜺𝑜𝑜
�
0
� 

= −[𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛽𝛽] �
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛼𝛼 𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛽𝛽
𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛼𝛼 𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛽𝛽

�
−1

∈ ℝ3×3𝑛𝑛 
(30) 

The second partial derivative of 𝑈𝑈𝑖𝑖𝑖𝑖
𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜) is obtained as 

𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓 ≔

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖
𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜺𝜺𝑜𝑜𝑇𝑇
�
0

= 𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀 + 𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 �

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝜀𝜀
𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝜀𝜀

� (31) 

We have the potential energy of the grasp system as 

𝑈𝑈𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜) ≔� 𝑈𝑈𝑖𝑖𝑖𝑖
𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜)

𝑚𝑚

𝑖𝑖=1
(32) 

Total grasp wrench 𝐺𝐺𝐶𝐶𝑓𝑓  and grasp stiffness matrix 𝐻𝐻𝐶𝐶𝑓𝑓 
are given by 

𝐺𝐺𝐶𝐶𝑓𝑓 ≔
𝜕𝜕𝑈𝑈𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜)
𝜕𝜕𝜺𝜺𝑜𝑜

�
0

= � 𝐺𝐺𝑖𝑖
𝐶𝐶𝑓𝑓

𝑚𝑚

𝑖𝑖=1
∈ ℝ3 

𝐻𝐻𝐶𝐶𝑓𝑓 ≔
𝜕𝜕2𝑈𝑈𝐶𝐶𝑓𝑓(𝜺𝜺𝑜𝑜)
𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜺𝜺𝑜𝑜𝑇𝑇

�
0

= � 𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝑚𝑚

𝑖𝑖=1
∈ ℝ3×3 

(33) 

If 𝐺𝐺𝐶𝐶𝑓𝑓 = 03 and 𝐻𝐻𝐶𝐶𝑓𝑓 ≻ 03×3 at the initial condition, then 
the grasp is stable. The condition 𝐺𝐺𝐶𝐶𝑓𝑓 = 0 means that the 
grasp is in wrench equilibrium. The condition 𝐻𝐻𝐶𝐶𝑓𝑓 ≻
03×3 means that the matrix is positive definite, and the 
grasp returns to the initial pose after external disturbances 
disappear. Using the eigenvalues and eigenvectors of the 
matrix 𝐻𝐻𝐶𝐶𝑓𝑓, we can evaluate the grasp stability. 

5. Effect of grasp parameters 

The matrix 𝐻𝐻𝐶𝐶𝑓𝑓  depends on grasp parameters which 
include contact positions, contact directions, contact 
forces, local curvatures, stiffness properties at the contact 
points. In our formulation, the matrix is analytically 
derived. We can differentiate the matrix by the grasp 
parameters. 

5.1. Partial derivative of the local curvatures 

In this subsection, we derive effects of the local 
curvatures at contact points. Partially differentiation of 
the stiffness matrix 𝐻𝐻𝑖𝑖

𝐶𝐶𝑓𝑓 by the local curvature 𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖  yields 
the following matrix: 

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖
=
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖
+ �

𝜕𝜕
𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

�
𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼
𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛽𝛽

��
𝑇𝑇

�𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓�

𝑇𝑇
 

+𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 �

𝜕𝜕
𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

�
𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼
𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛽𝛽

�� 

+𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 �

𝜕𝜕
𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖

�
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛼𝛼 𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛼𝛼
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛽𝛽 𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛽𝛽

�� �𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓�

𝑇𝑇
 

= 𝑓𝑓𝑥𝑥
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝒃𝒃𝑜𝑜𝑖𝑖𝑖𝑖𝒃𝒃𝑜𝑜𝑖𝑖𝑖𝑖𝑇𝑇 ≼ 03×3 (34) 

The derivatives 
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀
𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑜𝑜

, 
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀
𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑜𝑜

, ⋯  are briefly shown in 

Appendix C. In a similar manner, we have the following 
matrix: 

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖
= 𝑓𝑓𝑥𝑥

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝒃𝒃𝐶𝐶𝑖𝑖𝑖𝑖𝒃𝒃𝐶𝐶𝑖𝑖𝑖𝑖𝑇𝑇 ≼ 03×3 (35) 

where the vectors 𝒃𝒃𝑜𝑜𝑖𝑖𝑖𝑖  and 𝒃𝒃𝐶𝐶𝑖𝑖𝑖𝑖 ∈ ℝ3 are given by 

𝒃𝒃𝑜𝑜𝑖𝑖𝑖𝑖 ≔ 𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 �

02(𝑖𝑖−1)×1
𝒖𝒖1

02(𝑛𝑛−𝑖𝑖)×1
0𝑛𝑛×1

� , 𝒃𝒃𝐶𝐶𝑖𝑖𝑖𝑖 ≔ 𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓 �

02(𝑖𝑖−1)×1
𝒖𝒖2

02(𝑛𝑛−𝑖𝑖)×1
0𝑛𝑛×1

� (36) 

Because we have 𝑓𝑓𝑥𝑥
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 < 0, the derivatives 𝜕𝜕𝐻𝐻𝑖𝑖

𝐶𝐶𝑓𝑓 𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖�  
and 𝜕𝜕𝐻𝐻𝑖𝑖

𝐶𝐶𝑓𝑓 𝜕𝜕𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖�  are negative semi-definite. It is shown 
that the values of the local curvatures are made small, the 
grasp stability is enhanced. Its directions are given by the 
vectors 𝒃𝒃𝑜𝑜𝑖𝑖𝑖𝑖 and 𝒃𝒃𝐶𝐶𝑖𝑖𝑖𝑖 , respectively. 
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5.2. Partial derivative of the spring stiffnesses 

In this subsection, we derive effects of the spring 
stiffnesses. Partially differentiation of the matrix 𝐻𝐻𝑖𝑖

𝐶𝐶𝑓𝑓 by 
the joint stiffness 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖  yields the following formula: 

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖
= 𝒃𝒃𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖𝒃𝒃𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖𝑇𝑇 ≽ 03×3 (37) 

𝒃𝒃𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖 ≔ 𝑄𝑄𝑖𝑖
𝐶𝐶𝑓𝑓

⎣
⎢
⎢
⎡

02𝑛𝑛×1
0(𝑖𝑖−1)×1

1
0(𝑛𝑛−𝑖𝑖)×1⎦

⎥
⎥
⎤
∈ ℝ3  

In the case that the surface stiffness is given by 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 =
diag�𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 , 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦 , 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁�, the partial derivatives of 𝐻𝐻𝑖𝑖

𝐶𝐶𝑓𝑓 by 
these elements are obtained by  

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥
= 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑇𝑇 ≽ 03×3  

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦
= 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑇𝑇 ≽ 03×3  

𝜕𝜕𝐻𝐻𝑖𝑖
𝐶𝐶𝑓𝑓

𝜕𝜕𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁
= 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁𝑇𝑇 ≽ 03×3 (38) 

where the vectors 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 , 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦 , 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁 ∈ ℝ3  and the 
matrix 𝐶𝐶𝑖𝑖𝑖𝑖 ∈ ℝ3×3 are given by 

𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 ≔ 𝐶𝐶𝑖𝑖𝑖𝑖𝒗𝒗𝑥𝑥, 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦 ≔ 𝐶𝐶𝑖𝑖𝑖𝑖𝒗𝒗𝑦𝑦 , 
𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁 ≔ 𝐶𝐶𝑖𝑖𝑖𝑖𝒗𝒗𝜁𝜁 

𝐶𝐶𝑖𝑖𝑖𝑖 ≔

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝐵𝐵𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑄𝑄𝑖𝑖

𝐶𝐶𝑓𝑓

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�
02(𝑖𝑖−1)×3

𝐾𝐾𝑖𝑖𝑖𝑖𝑇𝑇

02(𝑛𝑛−𝑖𝑖)×3

�

−

⎣
⎢
⎢
⎢
⎡𝒗𝒗𝜁𝜁

𝑇𝑇 𝐵𝐵𝑖𝑖1𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖

⋮
𝒗𝒗𝜁𝜁𝑇𝑇 𝐵𝐵𝑖𝑖𝑖𝑖𝑇𝑇

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖

0(𝑛𝑛−𝑖𝑖)×3 ⎦
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

 
(39) 

The derivatives 
𝜕𝜕𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓

𝜕𝜕𝑓𝑓𝑎𝑎𝑖𝑖𝑜𝑜
, 
𝜕𝜕𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓

𝜕𝜕𝑓𝑓𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝
, 
𝜕𝜕𝐻𝐻𝑖𝑖

𝑓𝑓𝑓𝑓

𝜕𝜕𝑓𝑓𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝
, and 

𝜕𝜕𝐻𝐻𝑖𝑖
𝑓𝑓𝑓𝑓

𝜕𝜕𝑓𝑓𝑝𝑝𝑖𝑖𝑜𝑜𝑝𝑝
 are positive 

semi-definite. It is shown that the parameter 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖, 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥, 
𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦  and 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁  are larger, positive definiteness of the 
stiffness matrix are larger. Its corresponding directions 
are also obtained as 𝒃𝒃𝑓𝑓𝑎𝑎𝑖𝑖𝑖𝑖 , 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 , 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦 and 𝒃𝒃𝑓𝑓𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁 .  

6. Numerical examples 

As shown in (2), in this paper, we treated not only 
revolute but also prismatic joint type. Due to page space, 
in this section, we only consider the revolute type. 

As shown in Figure 3, we investigate the grasp that an 
object enveloped by a 2-finger 4-joint hand. In this 
example, the grasp is symmetric. The link lengths, local 
curvatures, and spring stiffnesses are set as follows: 

 

𝐿𝐿𝑏𝑏 = 0.010 m, 𝐿𝐿 = 0.030 m, 𝐿𝐿𝑐𝑐 = 0.015 m, 
𝜅𝜅𝑜𝑜 = 100 m−1, 𝜅𝜅𝐶𝐶 = 200 m−1, 𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖 = 10 Nm/rad, 
𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 = diag[500 N/m 500 N/m 10 Nm/rad] 

(40) 
For simplicity of discussion, the lengths of all finger links 
are same, the contact positions on the links are 
intermediate on the links, and the surface curvatures are 
convex. The center of the local curvature at contact point 
on each link surface are located on the link axis. The 
centers of the local curvatures at contact points on the 
object with the i-th finger are located at one point. 

 
 

In this example, the grasp will be stable. We show the 
grasp stiffness matrix, and eigenvalues and eigenvectors 
of the matrix. Moreover, we show the directions of the 
curvature and stiffness effects. 

The grasp stiffness matrix is calculated as  

 

 
(a) Link coordinate frames, link lengths, and joint angles 
 

 
(b) Contact coordinate frames and local curvatures 
Figure 3: Numerical example of an enveloping grasp 
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𝐻𝐻𝐶𝐶𝑓𝑓 = �
620.7 0 −0.092

0 630.1 0
−0.092 0 0.01

� (41) 

As shown in (41), not only diagonal elements but also 
interference elements between x-translation and rotation 
appear. The eigenvalues and eigenvectors of 𝐻𝐻𝐶𝐶𝑓𝑓  are 
shown in Table 1. In this grasp, all eigenvalues are 
positive, then the grasp is stable. In the first mode, the 
object displacement is obtained in y translation. In the 
second mode, the object displacement is mainly obtained 
in x translation. In the third mode, the object 
displacement is mainly obtained in rotation. 

Table 2 shows the direction vectors of the parameter 
effects. The vectors 𝒃𝒃𝑜𝑜11 , 𝒃𝒃𝐶𝐶11 , 𝒃𝒃𝑜𝑜12 , and 𝒃𝒃𝐶𝐶12  express 
curvature effects, then these appear in tangential 
directions at contact points. The vectors 𝒃𝒃𝑓𝑓𝑝𝑝11𝑥𝑥, 𝒃𝒃𝑓𝑓𝑝𝑝11𝑦𝑦, 
𝒃𝒃𝑓𝑓𝑝𝑝12𝑥𝑥 , 𝒃𝒃𝑓𝑓𝑝𝑝12𝑦𝑦  express stiffness effects at the 
corresponding contact points, then these appear in 
vertical direction at contact surface. 
 
Table 1: Eigenvalues and eigenvectors of the grasp 

mode 
𝑝𝑝 

Eigenvalues  
𝜆𝜆𝑝𝑝(𝐻𝐻𝐶𝐶𝑓𝑓) 

Eigenvectors 
𝒗𝒗𝑝𝑝(𝐻𝐻𝐶𝐶𝑓𝑓) 

1 630.1 [0, 1, 0]𝑇𝑇 
2 620.7 [1.00, 0, 0.00]𝑇𝑇 
3 0.0064 [0.00, 0, 1.00]𝑇𝑇 

 
Table 2: Direction vectors of the parameter effects for 
𝑖𝑖 = 1. (The case of 𝑖𝑖 = 2 is omitted for page space.) 
𝑗𝑗 𝜅𝜅𝑜𝑜𝑖𝑖𝑖𝑖  𝜅𝜅𝐶𝐶𝑖𝑖𝑖𝑖  𝑠𝑠𝑎𝑎𝑖𝑖𝑖𝑖  
1 𝒃𝒃𝑜𝑜11

= �
−0.64
−0.64
−0.02

� 

𝒃𝒃𝐶𝐶11

= �
−0.32
−0.32
−0.00

� 

𝒃𝒃𝑓𝑓𝑎𝑎11

= �
−0.66
−0.27
−0.00

� 

2 𝒃𝒃𝑜𝑜12

= �
0.63
−0.65
−0.02

� 

𝒃𝒃𝐶𝐶12

= �
0.32
−0.32
−0.00

� 

𝒃𝒃𝑓𝑓𝑎𝑎12

= �
−0.57
−0.47
−0.00

� 

Table 2 (continue) 
𝑗𝑗 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥 𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦  𝑠𝑠𝑝𝑝𝑖𝑖𝑖𝑖𝜁𝜁  

1 𝒃𝒃𝑓𝑓𝑝𝑝11𝑥𝑥

= �
−0.71
0.71
0.01

� 

𝒃𝒃𝑓𝑓𝑝𝑝11𝑦𝑦

= �
0.25
0.25
0.00

� 

𝒃𝒃𝑓𝑓𝑝𝑝11𝜁𝜁

= �
−0.06
−0.06
−0.00

� 

2 𝒃𝒃𝑓𝑓𝑝𝑝12𝑥𝑥

= �
−0.71
−0.71
−0.01

� 

𝒃𝒃𝑓𝑓𝑝𝑝12𝑦𝑦

= �
−0.24
0.26
0.00

� 

𝒃𝒃𝑓𝑓𝑝𝑝12𝜁𝜁

= �
0.06
−0.06
0.00

� 

7. Conclusions 

In order to obtain appropriate grasps, we treated grasp 
stability from the viewpoint of potential energy. 
Frictionless enveloping grasps in two dimensions was 
investigated. Not only joint position displacements but 
also link surface displacements are replaced with elastic 
properties. The potential energy of the grasp system 
including the displacements was derived. The wrench 
vector and the grasp stiffness matrix were obtained by the 
first and the second partial derivatives, respectively. The 
derivatives are formulated in an analytical way. It is 
shown that the wrench and the matrix are given by 
functions of the grasp parameters. Using partial 
derivatives of the stiffness matrix by local curvatures at 
contact points, the local curvature effects on the grasp 
stability were clarified. Stiffness effects were also 
derived. To confirm validity of our analysis, we showed 
a numerical example. 

Using our analysis, a grasp system can be evaluated 
when contact positions, contact directions, local 
curvatures, spring stiffnesses, and so on are inputted. 
Consequently, this method can be used for searching an 
optimum grasp and/or generating training data for 
machine learning.  

In [9], we considered masses of the object and finger 
links in the analysis. We can also include the masses in 
this paper but omitted due to page space. 

The case of rolling contact at contact points was omitted 
due to page space. We will discuss the case in our future 
publication. In our future work, we will discuss three 
dimensional grasps. 
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Appendix A: Vectors and matrices 

In planar case, a homogeneous transformation matrix of 
frame Σ𝑏𝑏  with respect to frame Σ𝑎𝑎 is denoted as 

𝐴𝐴𝑏𝑏𝑎𝑎 ≔ � 𝑅𝑅𝑏𝑏𝑎𝑎 𝒑𝒑𝑏𝑏𝑎𝑎

01×2 1 � ∈ ℝ3×3 (42) 

where 𝒑𝒑𝑏𝑏𝑎𝑎 ∈ ℝ2 is a position vector and 𝑅𝑅𝑏𝑏𝑎𝑎 ∈ ℝ2×2 is 
a rotation matrix. We use the following vectors and 
matrices: 

𝒖𝒖1 ≔ �10� , 𝒖𝒖2 ≔ �01� , 𝒛𝒛 ≔ � 1
−1� 

𝒗𝒗𝑥𝑥 ≔ �𝒖𝒖10 � , 𝒗𝒗𝑦𝑦 ≔ �𝒖𝒖20 � , 𝒗𝒗𝜁𝜁 ≔ �02×1
1 � 

𝜺𝜺 ≔ �
𝒙𝒙
𝜁𝜁� , 𝒙𝒙 ≔ �

𝑥𝑥
𝑦𝑦� 

Rot(𝜁𝜁) ≔ �cos 𝜁𝜁 − sin 𝜁𝜁
sin 𝜁𝜁 cos 𝜁𝜁 �, 

Ω ≔ �0 −1
1 0 � = Rot �

𝜋𝜋
2
� 

𝐴𝐴𝑡𝑡(𝒙𝒙) ≔ � 𝐼𝐼2 𝒙𝒙
01×2 1� , 𝐴𝐴𝑟𝑟(𝜁𝜁) ≔ �Rot(𝜁𝜁) 02×1

01×2 1 � 

𝐴𝐴𝑡𝑡𝑟𝑟(𝜺𝜺) ≔ 𝐴𝐴𝑡𝑡(𝒙𝒙)𝐴𝐴𝑟𝑟(𝜁𝜁), 

𝐵𝐵𝑏𝑏𝑎𝑎 ≔ � 𝑅𝑅𝑏𝑏𝑎𝑎 −Ω 𝒑𝒑𝑏𝑏𝑎𝑎

01×2 1 � , 𝐼𝐼23 = [𝐼𝐼2 02×1] ∈ ℝ2×3 

           𝑊𝑊𝑏𝑏
𝑎𝑎 ≔ �

𝑅𝑅𝑏𝑏𝑎𝑎

𝒑𝒑𝑏𝑏𝑎𝑎 × 𝑅𝑅𝑏𝑏𝑎𝑎 � = �𝐼𝐼23 𝐵𝐵𝑎𝑎𝑏𝑏 �
𝑇𝑇
             (43) 

Appendix B: Partial derivatives of 𝑼𝑼𝒊𝒊𝒒𝒒 

The second partial derivatives of 𝑈𝑈𝑖𝑖𝑖𝑖  are obtained as 
follows: 

𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼𝑘𝑘 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜶𝜶𝑖𝑖𝑑𝑑𝑇𝑇
�
0
 

= 𝐵𝐵𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 𝑆𝑆𝑝𝑝𝑖𝑖𝑑𝑑𝐾𝐾𝑖𝑖𝑑𝑑 + 𝒗𝒗𝜁𝜁�𝒗𝒗𝑥𝑥𝑇𝑇𝝉𝝉𝑝𝑝𝑖𝑖𝑑𝑑� �

1
1�

𝑇𝑇
 

𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝑞𝑞𝑘𝑘 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑑𝑑
�
0
 

= −� 𝐵𝐵𝑜𝑜𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 𝐵𝐵𝑖𝑖𝑑𝑑

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝒗𝒗𝜁𝜁 + 𝐼𝐼23𝑇𝑇 Ω𝐼𝐼23𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖=𝑑𝑑

 

𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑙𝑙𝛼𝛼𝑘𝑘 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜶𝜶𝑖𝑖𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖𝑑𝑑𝑇𝑇
�
0
 

= �𝐾𝐾𝑖𝑖𝑖𝑖
𝑇𝑇𝑆𝑆𝑝𝑝𝑖𝑖𝑑𝑑𝐾𝐾𝑖𝑖𝑑𝑑 + �𝒗𝒗𝑥𝑥𝑇𝑇𝝉𝝉𝑝𝑝𝑖𝑖𝑑𝑑� �

𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 −𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑� (𝑙𝑙 = 𝑘𝑘)

02×2 (otherwise)
 

𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑙𝑙𝛼𝛼𝑘𝑘 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖𝑑𝑑𝑇𝑇

�
0
 

= �−𝒗𝒗𝜁𝜁
𝑇𝑇 𝐵𝐵𝑖𝑖𝑖𝑖𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 𝑆𝑆𝑝𝑝𝑖𝑖𝑑𝑑𝐾𝐾𝑖𝑖𝑑𝑑 − �𝒗𝒗𝑥𝑥𝑇𝑇𝝉𝝉𝑝𝑝𝑖𝑖𝑑𝑑�[1 1] (𝑙𝑙 ≤ 𝑘𝑘)

01×2 (otherwise)
 

𝑈𝑈𝑖𝑖𝑖𝑖,𝑖𝑖𝑙𝑙𝑖𝑖𝑘𝑘 ≔
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑖𝑖𝜕𝜕𝑞𝑞𝑑𝑑𝑎𝑎𝑖𝑖𝑑𝑑

�
0
 

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑠𝑠𝑎𝑎𝑖𝑖𝑑𝑑 + ��𝒗𝒗𝜁𝜁𝑇𝑇 𝐵𝐵𝑖𝑖𝑖𝑖𝑇𝑇

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 𝐵𝐵𝑖𝑖𝑑𝑑
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝒗𝒗𝜁𝜁 + 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇 𝐼𝐼23𝑇𝑇 𝒑𝒑𝑖𝑖𝑑𝑑

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �
𝑛𝑛

𝑖𝑖=𝑑𝑑

(𝑙𝑙 = 𝑘𝑘)

��𝒗𝒗𝜁𝜁𝑇𝑇 𝐵𝐵𝑖𝑖𝑖𝑖𝑇𝑇
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝑆𝑆𝑝𝑝𝑖𝑖𝑖𝑖 𝐵𝐵𝑖𝑖𝑑𝑑

𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 𝒗𝒗𝜁𝜁 + 𝝉𝝉𝑝𝑝𝑖𝑖𝑖𝑖𝑇𝑇 𝐼𝐼23𝑇𝑇 𝒑𝒑𝑖𝑖𝑑𝑑
𝐿𝐿𝐶𝐶𝑖𝑖𝑖𝑖 �

𝑛𝑛

𝑖𝑖=𝑑𝑑

(𝑘𝑘 ≤ 𝑙𝑙 ≤ 𝑗𝑗)

 

(44) 
 

𝜕𝜕
𝜕𝜕𝜺𝜺𝑜𝑜

�
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇
� 

= �
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇
𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)

𝜕𝜕𝜺𝜺𝑜𝑜𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇
�

+ �
𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇

𝜕𝜕𝜺𝜺𝑜𝑜
𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇

𝜕𝜕𝜺𝜺𝑜𝑜
�

⎣
⎢
⎢
⎢
⎡𝜕𝜕

2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜶𝜶𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜶𝜶𝑖𝑖𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜷𝜷𝑖𝑖𝜕𝜕𝜶𝜶𝑖𝑖𝑇𝑇

𝜕𝜕2𝑈𝑈𝑖𝑖𝑖𝑖(𝜺𝜺𝑜𝑜,𝜶𝜶𝑖𝑖 ,𝜷𝜷𝑖𝑖)
𝜕𝜕𝜷𝜷𝑖𝑖𝜕𝜕𝜷𝜷𝑖𝑖𝑇𝑇 ⎦

⎥
⎥
⎥
⎤
 

= [03×2𝑛𝑛 03×𝑛𝑛] 
(45) 

Appendix C: Curvature effects 

The second partial derivatives of 𝑈𝑈𝑖𝑖𝑖𝑖  are obtained as 
follows: 
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𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝜀𝜀

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
= 03×3,

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛽𝛽

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
= 0𝑛𝑛×𝑛𝑛, 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛽𝛽

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
=
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝜀𝜀

𝑇𝑇

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
= 03×𝑛𝑛, 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝜀𝜀
𝑇𝑇

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
=
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
=

𝑈𝑈𝑖𝑖𝑖𝑖,𝜀𝜀𝛼𝛼𝑘𝑘𝒛𝒛
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 + 𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑

�
02(𝑑𝑑−1)×1

𝒖𝒖1
02(𝑛𝑛−𝑑𝑑)×1

�

𝑇𝑇

∈ ℝ3×2𝑛𝑛, 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛼𝛼

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
= �

02(𝑑𝑑−1)×1
𝒖𝒖1

02(𝑛𝑛−𝑑𝑑)×1

�

⎣
⎢
⎢
⎢
⎡

02(𝑑𝑑−1)×1
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑘𝑘𝛼𝛼𝑘𝑘𝒛𝒛
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 + 𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑
02(𝑛𝑛−𝑑𝑑)×1 ⎦

⎥
⎥
⎥
⎤
𝑇𝑇

 

+

⎣
⎢
⎢
⎢
⎡

02(𝑑𝑑−1)×1
𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝑘𝑘𝛼𝛼𝑘𝑘𝒛𝒛
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 + 𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑
02(𝑛𝑛−𝑑𝑑)×1 ⎦

⎥
⎥
⎥
⎤
�
02(𝑑𝑑−1)×1

𝒖𝒖1
02(𝑛𝑛−𝑑𝑑)×1

�

𝑇𝑇

+ � 𝒇𝒇𝑇𝑇𝐿𝐿𝐶𝐶𝑖𝑖𝑑𝑑 𝒖𝒖1� �
02(𝑑𝑑−1)×1

𝒖𝒖1
02(𝑛𝑛−𝑑𝑑)×1

� �
02(𝑑𝑑−1)×1

𝒖𝒖1
02(𝑛𝑛−𝑑𝑑)×1

�

𝑇𝑇

, 

𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛼𝛼𝛽𝛽
𝑇𝑇

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑
=
𝜕𝜕𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛼𝛼

𝜕𝜕𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑

= �0𝑛𝑛×2(𝑑𝑑−1)
𝑈𝑈𝑖𝑖𝑖𝑖,𝛽𝛽𝛼𝛼𝑘𝑘𝒛𝒛
𝜅𝜅𝑜𝑜𝑖𝑖𝑑𝑑 + 𝜅𝜅𝐶𝐶𝑖𝑖𝑑𝑑

𝒖𝒖1𝑇𝑇 0𝑛𝑛×2(𝑛𝑛−𝑑𝑑)�. 

(44) 
 

Authors Introduction 
 

Dr. Takayoshi Yamada 
He is a Professor with the Department 
of Mechanical Engineering, Gifu 
University. He received the B.E., 
M.E, Ph.D. degrees in Mechanical 
Engineering from the Nagoya 
Institute of Technology, Japan, in 
1991, 1993, 1995, respectively. He is 
a member of the Japan Society of 
Mechanical Engineers (JSME), the 

Robotics Society of Japan (RSJ), the Society of Instrument 
and Control Engineers (SICE) , IEEE, and the Japan 
Society of Precision Engineering (JSPE). His research 
interests include grasping, manipulation, sensing, and 
automation systems. 

 
Dr. Hidehiko Yamamoto 

He is currently a specially appointed 
professor, Gifu University. He 
received the M.E. and Ph. D. degrees 
in Mech. Eng. from Nagoya Institute 
of Technology, in 1980, 1991. He was 
a professor with the Department. of 
Mechanical Engineering, Gifu 
University.  

 

 

 


	ARTICLE INFO
	1. Introduction
	2. Problem Formulation,
	2.1. Notations
	2.2. Displacements of joint position and finger surface
	2.3. Potential energy of the grasp
	2.4. Contact constraints of the object and finger link surfaces

	3. Partial derivatives of the potential energy
	3.1. The first partial derivatives
	3.2. The second partial derivatives

	4. Enveloping grasps with frictionless sliding contact
	4.1. Frictionless constraints at contacts

	5. Effect of grasp parameters
	5.1. Partial derivative of the local curvatures
	5.2. Partial derivative of the spring stiffnesses

	6. Numerical examples
	7. Conclusions
	References
	Appendix A: Vectors and matrices
	Appendix B: Partial derivatives of ,𝑼-𝒊𝒒.
	Appendix C: Curvature effects

