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1. Introduction

ABSTRACT

This paper discusses quasi-static grasp stability of frictionless enveloping grasps in two
dimensions. The stability is investigated from the viewpoint of potential energy stored in the
grasps. The system of the grasps is replaced with elastic property, in which joint position and link
surface properties are represented by linear stiffness. The contact constraints between a grasped
object and finger links are formulated. The potential energy of the grasp system is obtained from
the stiffness and the joint and link surface displacements. A wrench (i.e., force and moment)
vector and a stiffness matrix of the grasp system are derived from partial differentiations by the
pose (i.e., translation and rotation) displacement of the object. The grasps are stable if both the
wrench vector is zero and the matrix is positive definite. The stability is evaluated by the
eigenvalues of the matrix. Since, in this paper, the wrench vector and the stiffness matrix are
derived in an analytical way, the matrix is given as a function of grasp positions, grasp forces,
local curvatures, joint and surface stiffnesses, and so on at contact points, explicitly. We
investigate curvature and stiffness effects on the grasp system by partially differentiating the
matrix by the curvatures and stiffnesses. The positive definiteness of the matrix differentiations
is analyzed. Validity of our analysis is confirmed through numerical examples.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.
This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/).

squeezing, slipping out, breaking the parts, appropriate
grasp forms (i.e., grasp types, grasp positions, grasp

Dexterous and flexible hands are inherent in human
beings. The hands can grasp and manipulate objects of
various shapes skillfully. In various fields like as
production lines including assembly tasks, picking tasks,
handling tasks, and so on, manual handworks by skillful
workers are remained. Human hands are utilized for not
only parts handling but also drilling and screw tightening
with some tools. However, the handworks will be able to
become bottlenecks in the production lines. Therefore,
the  human-like  advanced  technologies  and
methodologies are required for robots in mechanical
functions.

Various types of grasp forms can be imagined like as
pinching, enveloping, hooking, and so on. To avoid

forces, etc.) are determined from the various types of
grasps.

In order to obtain suitable grasps, machine learning
methods are tackled in recent years. Siddiqui et al. [1], Li
et al. [2], and Dong et al. [3] discussed grasp stability
based on large amount of experimental data acquired
from vision and/or force sensor. In general, the learning
methods require strong CPU power, large amount of
training data, and so on.

On the other hands, in traditional methodologies, grasp
and manipulation of objects by multi-fingered hands are
tackled from the viewpoint of mechanics, kinematics,
statics, and dynamics in details. As one of the methods,
Hanafusa et al. [4] and Nguyen [5] proposed a concept of
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grasp stability. The stability was investigated from the
viewpoint of potential energy stored in the grasp system.
In the system, every finger displacement was replaced
with linear elastic property. The stability expresses the
index whether or not the grasp system returns to its initial
pose (i.e., position and orientation) after external
disturbance disappears. Watanabe [6] and Dong et al. [7]
attacked effects of softness at contact points. In Ref. [§],
we explored grasp stability of two spatial objects.
Contact surface geometry (i.e., curvature, torsion, and
metric tensor) was considered. Ref. [9] explored grasp
stability of pinching grasps in which each finger is
constructed of three revolute or prismatic joints. Effects
of local curvatures on the stability were also tackled. Ref.
[10] investigated grasp position effects on the grasp
stability and proposed an algorithm for automatic
generation of optimal grasp. In grasp forms, there are
pinching grasps by fingertips, enveloping grasps by
finger link surfaces, and so on. Refs. [4], [10] explored

pinching grasps.
‘ Finger

Finger

Grasped
object

Finger
surface

Figure 1: An enveloping grasp in two dimensions

In this paper, we explore quasi-static grasp stability of
frictionless enveloping grasps in two dimensions (Figure
1). The grasp systems are analyzed by replacing joint
position displacement and finger surface displacement
with elastic model. In Section 2, displacement parameters,
potential energies, and contact constraints are formulated.
In Section 3, partial derivatives of the potential energy
are derived. In Section 4, frictionless conditions at
contact points are formulated and the wrench vector and
stiffness matrix of the grasp system are derived. By using
the eigenvalues of the matrix, the grasp stability is
evaluated. In our formulation, the wrench and matrix are
analytically derived, it is explicitly shown that the matrix
is given as a function of grasp positions, grasp forces,
local curvatures, joint and surface stiffnesses, and so on
at contact points. In Section 5, we analyze curvature and
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stiffness effects on the grasp system by partially
differentiating the matrix by the curvatures and
stiffnesses. In Section 6, we show a numerical example
to confirm validity of our analysis. In Section 7, we show
our conclusion.

2. Problem Formulation,

An object is enveloped by an m-fingered hand of which
each finger consists of n-joints and links. We suppose
that every link of the fingers is in contact with the object
and the number of contact points of each link is one. Both
every link and object surfaces are curved at the contact
point but not overlapped each other.

Grasped object

L5

Palm

Contact ZLfij
coordinate
frame Joint j

Finger link

Zio
Figure 2: Object and finger coordinate frames

2.1. Notations

Finger number is denoted asi (i =1,2,--,m), and
joint and link number is denoted as j (j = 1,2,:+,n). As
shown in Figure 2, some coordinates are defined as
follows:

Xp: Base coordinate frame of the grasp system.

X,: Object coordinate frame fixed on the object.

Xpo: Initial pose of Z,,.

X;0: Base coordinate frame of the i-th finger.

Z;;: Joint and link coordinate frame of the j-th joint of
the i-th finger.

Zpij: Initial pose of Z;;.

Zcoij» Zcrij: Contact coordinate frames on the object
and finger surfaces, respectively.

Zioij » Zrpij - Initial poses of Zgo;; and Zggy;
respectively.

Zpi;: Deformed coordinate frame of Z¢;;.



In Appendix A, we show vectors and matrices used in
the following sections.

2.2. Displacements of joint position and finger
surface

In this subsection, we explain position of each finger
joint and pose of each finger link surface.
Configurations of the finger links are represented by
positions of the finger joints. We define position of the j-
th joint as symbol q,;; € R, which is represented as the
following components:
Qaij = 9naij T 9caij + 9daij,

G=12-,n (@)

naij Natural component
Qeaij Compressed component by the initial force
Gaqaij Displaced component by the object displacement

The relative pose of X;; with respect to X;j_qy is

represented as  the  following  homogeneous
transformation matrix:

U744 (qaiy)
i(j_l)Abij (Gnaij» 9eaij)Ar(daaij)
iU_l)Abi}-(qnaii, qcaij)At(qdaijul) for prismatic joint
G=12--n) (2)

The link surface is in contact on the object. We suppose
that deformation of the link surface is approximated as
the pose displacement of the surface coordinate. We
define the deformation as symbol 9pij € R3, which is
represented as the following components:

Qpij = Acpij T dapij € R®, (j=12,-,n) 3)

Acpij Compressed component by the initial force
{deij Displaced component by the object displacement
The relative pose of X,f; with respect to X;; is
represented by the following  homogeneous
transformation matrix:

YArrij(@pii) = Y Api(@epii ) A (Qapi) (4
As a result, displacement parameters on the j-th link are
summarized as the following vector:

T
qaij = [qdaij'quij] €R*

for revolute joint

(5)

2.3. Potential energy of the grasp

We define an elastic coefficient of the joint position
displacement as s,;; € R and the potential energy of the
Jj-th joint as

1 2
Uaij(9aaij) = 5 Saij (Gcaij + 9aaij) (6)

Initial joint torque 7,;; € R is formulated as
Taij *= Saij9caij @)
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The coefficient s4;; is generated by some joint stiffness
control and then is changeable. The torque 7;; is also
changeable by adjusting s,;; and qq;;-

We define a stiffness coefficient of the elasticity of the
link surface displacement as S,;; € R**® and the
potential energy of the j-th link of the i-th finger as

1 T
Upij(@apij) = 5 [epis + Qapij] Spij[9epij + dapij]
(8)
Initial contact force T,;; is formulated as
Ty = €C)]
The coefficient matrix S;; is inherent in the mechanical
surface property.
We obtain the potential energy of the i-th finger as

n
Ui(qa) = Z 1{Uaij(CIdaij) +Upij(aapij)}  (10)
j=
where the symbol q; is defined as the following vector.
9ai = (a1 Gaim]” € R (11)

Since the number of fingers is denoted as m, we obtain
the potential energy of the grasp system as

U(qa) = Z-_lui(%i): qq = 941, qam]”
(12)

Spijlepij

2.4. Contact constraints of the object and finger
link surfaces

Since the j-th link surface is in contact on the object,
the contact constraint is given by the following formula.
by b Loij
Apo"°Ao(€0) “ALoij " Acoij(@oif)
_ by i i(j-1)
= PA;0" A1 (qain) X - x "VTVA;(qai)
i, Lrii crii
x YAz (@pis)"" Acyis (7)Y Aco
(j = 1,2,"',71) (13)
The parameter £, € R3 denotes pose (i.e., position and
orientation) displacement of the object. The parameters
®oij ER and ap;; ER denote the contact point
displacements on the object and link surfaces,
respectively.
Loii Loii Loii
™ Acoij(@oij) = """ AoijAr (Koij@oij) " Araij
Lfij — Lfij Lfij -1
Acsij(asij) =" Ayij Ay (1cpijai) " Al
(14)

i i
where the matrices “°Y 4,0 and VA, ;,; are defined as

Kfij
the following forms:

Loij W -1 Lfij
Awoij = A(—r5iuy), A

wrij = Ac(—r7us)
(15)
Local curvature at contact point is denoted as k. If the
curvature K is positive, zero, or negative, then the surface
is convex, flat, or concave, respectively. Because of no
overlapping between the object and finger link surfaces,
we have k,;; + Kr;; > 0. Since the link surface contacts



on the object surface, the relation between Z¢f;; and
Zcoij 18 given as

Aoty = Ar(m) (16)
From the contact constraint (13), we obtain
Atr(qdpii) = p”fliil(]_l)Ai_jl(qaij) X o
X ) l'OAi_l1 (qail)mA'I?o bvo (80) oALoij
X Y Acoij (i)Y Acay TV At (ag)
(17)

The surface displacement q,,,;; depends on the object
displacement &, joint position displacement gy (k =
1,2,-++,j), and contact position displacement e; -

Qapij (So, Aij, qaai1, qdaij)'

G=12--,n) (18)
where the symbol a;; is defined as the following vector.
a .
Consequently, the energy (10) is transformed to
Uiq(&o, i, B) =
n
= Z . {Uaij(CIdaij)
j=1
+ Upi; (qdpij(go' aij, Qaaitr qdaij))}
(20)

where the symbols a; and B; are defined as the
following vectors:

ai;
ai = : € Rzn‘ ﬂl’ =
Ain

Qaai1

€ R" (21)

Qdain
3. Partial derivatives of the potential energy

3.1. The first partial derivatives

In this subsection, we show the first partial derivatives
of the potential energy by &,, &;, and ;. Considering the
initial condition, we have the following vectors:

U, (g,,a;, Bi) noo
— qr—o LIl — LfijpT 3
Uiq,g = 680 = Zj—l B, Tpij eER
0 =
U, (g, a;, By) Uig.ay
) — iqg\€o» i, Pi _ . € R2"
aa Ja; ’
' 0 _Uiq.an_
I
_0Uy (g5, a;, By) 1 n
Uig.p = T = : ER
' o |Uigqn]
(22)
where the elements Uy, o, and Uyq g, are obtained as
U, (g,,a;, Bi)
q\€o i Pi T 2
i =—— =Ky T, €ER
iq.ak day . ik tpi
_[TU2 TU2 3x2
K = [Koik _Kfik] €R
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U = Uy (&, @, By)
A 09qaik 0
n
— T LfijpT
= Tqaik — v{ z - Bik‘rpl’]’ eER
]=

(23)
The detailed derivations are omitted for page space.

3.2. The second partial derivatives

In this subsection, we show the second partial
derivatives of the potential energy by &,, «;, and S;.
Considering the initial condition, we have the following
matrices:

U o 02Uiq (&, ;) Bi)

taee de,0€Tl o

n
Lfij Lfij Lfij
= Z A T3 Spi; Y By + v (VPG Lo Tyis) ()
= € ]RSXS
Ul — U e 02Uyq (g5, i, Bi)
igae = VYigea = W .
= [Uiq,sal Uiq,san] € R3%2n
0%U;q(g0, a1, By)
agoaﬁ’l,r 0
Uigeqn] € R¥™

Uig.e = Uigep =

= [Uiq,ﬂh
_0%Uy (g, i, Bi)
e da;0a’
Uiq,a1a1 iqaian
= : : € R2nx2n
Uiq,anal Uiq,ocnan
2
a Uiq(SOl ai!ﬂi)
T
B, 0a .
Uiqr‘hfh Uiq.than
= : : € Rann
Uiq,th U
U ) 0%Uq(g,, @, BY)
iq.B8 =
0p0B]
Uiq,qlql UiQrQlQn
= : : € RXn
U U

0

Uigap = Uigpa =

iq,qnan

0

iq,9n41 iq4,9nqn

(24)
The details of the elements are shown in Appendix B.

4. Enveloping grasps with frictionless sliding
contact

4.1. Frictionless constraints at contacts

Since the finger link surface is in contact on the object
with frictionless sliding, the contact point displacement
a; and the joint position displacement B; have to locally



minimize the energy. Consequently, the following
constraints are handled:

anq (80' a;, Bl)

=0 25.1
aai 2n ( )
Uy (&0, a;, By)
— =0 25.2
From (25.1) at the initial condition, we have Ujq o, = 05.

Using (23), we have the following contact force:

Lfik f
Ty = I Lflkf’ Lfikf _ [Lfik x
fy

Lfikfx <0, Lfikfy -0
The symbol Lfik f and Lrik fy are normal and tangential

components of the contact force, respectively. Because
Lfik

€ R?,

(26)

the contact force ™ ™ f is represented in the frame Xy,
Lyt f+ 1s negative. From (25.2) at the initial condition, we
have U; = 0. Using (23), we have the following joint

torque:

19,9k

Taik = v( Z LfUBLkrpl] (27)
j=k

Since (25) has 3n constraints, the number of independent
parameters of the grasp system is reduced to three.
Finally, the displacements a; and f; are given by
functions of the parameter &,.

UL (&) = Uiy (20, i(20), Bi(e,))  (28)
Considering (25), the following gradient is obtained.
()| < ’
Gifs = a Z OWLf,:]'Lf”f (29)
€o 0o Jj=1

Deriving partial derivative of (25) by the object
displacement g,, we have the following formula:

55 [0ai|  9B{ ]
L7 |oe, de
U" ol (30)
= —[Uigea Uigep] [ i iq‘“ﬁ] € R
Uig,pa thBB

lq as

31
o] e
We have the potential energy of the grasp system as
m
Use) =) ULz, (32)
i_

Total grasp wrench G/* and grasp stiffness matrix H/S
are given by

The second partial derivative of U (80) is obtained as
fs
Hs = 0*Uig (£0)

i de,0€l

+Q°

lq ee T

fs
G = aUa—g(g") Zm G/* € R3
o
2 (33)
HfS = aazf;(:]?) Z Hfs € ]RSXS

50

If G'S = 05 and H'S > 0545 at the initial condition, then
the grasp is stable. The condition G = 0 means that the
grasp is in wrench equilibrium. The condition H/S >
0343 means that the matrix is positive definite, and the
grasp returns to the initial pose after external disturbances
disappear. Using the eigenvalues and eigenvectors of the
matrix H'S, we can evaluate the grasp stability.

5. Effect of grasp parameters

The matrix H'S depends on grasp parameters which
include contact positions, contact directions, contact
forces, local curvatures, stiffness properties at the contact
points. In our formulation, the matrix is analytically
derived. We can differentiate the matrix by the grasp
parameters.

5.1. Partial derivative of the local curvatures

In this subsection, we derive effects of the local
curvatures at contact points. Partially differentiation of
the stiffness matrix Hif * by the local curvature x,; ; yields
the following matrix:

oH/* _ Ujgee +{ [ a sa]}T [Qfs]T
Okpij 0Ky ki WUiqep ¢
fs iq.cx
o {akou [Ulq 55]}
Qfs{ [ igaa  Uig, ﬁ“]} [Q,fs]T
aKot] Ulq ap Ulq BB '
Lﬂ]fxboubz;u 03><3 (34)

lq ge aUlq sa

ou . .
The derivatives P -+ are briefly shown in

7 Ok
Koij oij
Appendix C. In a similar manner, we have the following
matrix:

OH bsi;ib%: <0 (35)
Fﬁj— fibrijbsij < 03x3
where the vectors b,;; and by;; € R3 are given by
02¢-nx1 02¢j-1)x1
boij = 0Qf° Oz(r:l—ljm by =0l 02(:11—2]')><1 (36)
071.)(1 071.)(1

Because we have /7 f, < 0, the derivatives dH/* /i,
and OH!® /k;,; are negative semi-definite. It is shown
that the values of the local curvatures are made small, the

grasp stability is enhanced. Its directions are given by the
vectors by;; and by;;, respectively.



5.2. Partial derivative of the spring stiffnesses

In this subsection, we derive effects of the spring
stiffnesses. Partially differentiation of the matrix Hif by
the joint stiffness s,;; yields the following formula:

oH/*
3 — = byqijbiaij # 0353 (37)
Saij
02nx1
0¢j—nx1

bggj = Qlfs 1 € R3
On-jyx1
In the case that the surface stiffness is given by Sy,;; =
diag[spi jx Spijys Spi j{], the partial derivatives of Hl.f * by
these elements are obtained by

fs
0H;] = bspiijzpijx 7 0343
aspl'jx
fs
/I bepijybspijy 7 O3xs
OSpijy
oH/*
i T
——=b.,;i;b., .. =0 38
aspij( spij¢Pspij¢ 7 Y3x3 ( )

where the vectors bgy;jy , Bspijy » Dspij € R® and the
matrix C;; € R¥*3 are given by
bspijx = Civy, bspijy = Cjjvy,
bsyij¢ = Cijvg
[ 02(j—1)><3
K
02(n-j)x3 (39)

— JLfijpT fs Lfij
Cij=1""B, +0; vIYYUBL (¢
., TLfUpT

v By
L L 0n—j)xs 1
ul* onl* on/* ou’* .

, , , and are positive
0saij Ospijx OSpijy Ospij¢
semi-definite. It is shown that the parameter s,; > Spijxs
Spijy and s,;j; are larger, positive definiteness of the

The derivatives

stiffness matrix are larger. Its corresponding directions
are also obtained as byg;j, Dspijxs Dspijy and gy jc.

6. Numerical examples

As shown in (2), in this paper, we treated not only
revolute but also prismatic joint type. Due to page space,
in this section, we only consider the revolute type.

As shown in Figure 3, we investigate the grasp that an
object enveloped by a 2-finger 4-joint hand. In this
example, the grasp is symmetric. The link lengths, local
curvatures, and spring stiffnesses are set as follows:

L, =0.010m, L =0.030m, L, = 0.015m,
Ko =100m™, k; = 200 m™?, 5,;; = 10 Nm/rad,
Spij = diag[S00 N/m 500 N/m 10 Nm/rad]
(40)
For simplicity of discussion, the lengths of all finger links
are same, the contact positions on the links are
intermediate on the links, and the surface curvatures are
convex. The center of the local curvature at contact point
on each link surface are located on the link axis. The
centers of the local curvatures at contact points on the
object with the i-th finger are located at one point.

(b) Contact coordinate frames and local curvatures
Figure 3: Numerical example of an enveloping grasp

In this example, the grasp will be stable. We show the
grasp stiffness matrix, and eigenvalues and eigenvectors
of the matrix. Moreover, we show the directions of the
curvature and stiffness effects.

The grasp stiffness matrix is calculated as



620.7 0 —0.092
HIS = 0 630.1 0 (41)
—0.092 0 0.01

As shown in (41), not only diagonal elements but also
interference elements between x-translation and rotation
appear. The eigenvalues and eigenvectors of H/S are
shown in Table 1. In this grasp, all eigenvalues are
positive, then the grasp is stable. In the first mode, the
object displacement is obtained in y translation. In the
second mode, the object displacement is mainly obtained
in x translation. In the third mode, the object
displacement is mainly obtained in rotation.

Table 2 shows the direction vectors of the parameter
effects. The vectors by11, br11, Bo12, and bgq, express
curvature effects, then these appear in tangential
directions at contact points. The vectors Bg,11x, Dsp11y,
bspi2x » bgpizy express stiffness effects at the
corresponding contact points, then these appear in
vertical direction at contact surface.

Table 1: Eigenvalues and eigenvectors of the grasp

mode | Eigenvalues Eigenvectors
4 Ap(HT®) v, (H*)
1 630.1 [0, 1, 0]
2 620.7 [1.00, 0, 0.00]7
3 0.0064 [0.00, 0, 1.00]7

Table 2: Direction vectors of the parameter effects for
i = 1. (The case of i = 2 is omitted for page space.)

J Koij Krij Saij
1 boll bfll bsall
[—0.64] [—0.32] [—0.66]
=1-0.64 =1-0.32 =1-0.27
[—0.021] | —0.00. [—0.00.
2 bolZ bf12 bsalz
[ 0.63 ] [ 0.32 [—0.57]
=1-0.65 =1-0.32 =1-0.47
[ —0.02] | —0.00] [—0.00.
Table 2 (continue)
J Spijx Spijy Spijg
1 bspllx bsplly bspll(
[—0.71] 0.25 [—0.06]
=10.71 =10.25 =1-0.06
L 0.01 | 0.00 [ —0.00.
2 bsple bsp12y bsplz(
[—0.71] —0.24 [ 0.06 ]
=1-0.71 =1 0.26 =1-0.06
—0.01 0.00 [ 0.00 |
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7. Conclusions

In order to obtain appropriate grasps, we treated grasp
stability from the viewpoint of potential energy.
Frictionless enveloping grasps in two dimensions was
investigated. Not only joint position displacements but
also link surface displacements are replaced with elastic
properties. The potential energy of the grasp system
including the displacements was derived. The wrench
vector and the grasp stiffness matrix were obtained by the
first and the second partial derivatives, respectively. The
derivatives are formulated in an analytical way. It is
shown that the wrench and the matrix are given by
functions of the grasp parameters. Using partial
derivatives of the stiffness matrix by local curvatures at
contact points, the local curvature effects on the grasp
stability were clarified. Stiffness effects were also
derived. To confirm validity of our analysis, we showed
a numerical example.

Using our analysis, a grasp system can be evaluated
when contact positions, contact directions, local
curvatures, spring stiffnesses, and so on are inputted.
Consequently, this method can be used for searching an
optimum grasp and/or generating training data for
machine learning.

In [9], we considered masses of the object and finger
links in the analysis. We can also include the masses in
this paper but omitted due to page space.

The case of rolling contact at contact points was omitted
due to page space. We will discuss the case in our future
publication. In our future work, we will discuss three
dimensional grasps.
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Appendix A: Vectors and matrices

In planar case, a homogeneous transformation matrix of
frame X, with respect to frame X, is denoted as
aAb - aRb apb] € R3><3
012 1
where *p, € R? is a position vector and *R;, € R?*? is

a rotation matrix. We use the following vectors and

(42)

matrices: 0
1 1
wo= o] we= ], 2=[ ]
N e
e=[}) ==[}]
Rot() = [0 oot |

Q= [(1) _01] = Rot (g)
o=l 3} o =[50 )
Ay (8) = A ()AL (D),

-0
= pb]. L =[I; 054] € R*3
01x2 1

Py X aRb] = [Ls bBa]T (43)
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Appendix B: Partial derivatives of U;,

The second partial derivatives of Uy, are obtained as
follows:

0%U;q (g5, @, BY)

iqeag asoaaT o
1 T
Lf'kBTSplelk + v (ViTpix) [1]
o 0%U (g, B)
e 0€,0qaaic |,
n
Z Lf”BT pL]LfUBikv( + 12T39123rpij]
j=k
U ._ Zth (£u'au Bt)
“wa T ey dal,
0
oik Koik
;KLlSkaKLk + (vx plk) [Kmk _Kfik] (=K
0,2 (otherwise)
U; — 0%Uiq (€0, @i, Bi)
i 0qqqp 0t o
_ { Vi Bl S K — (VT )1 1] (A< k)
01x2 (otherwise)
U. a th(gu'auﬁt)
aai a‘ldaua%mk o
Sair + Z[VTLfUBLTLSpiijUBikV( + T;ijlzT3LfUpik]
(I=k)
=< n
Z[ TLfUB SpLijUBLkv( +sz]12T3Lﬂ]ka]
=k
k<l<))
(44)

ad [anq(so' a,B;) 0dUy(e,, ai'ﬁi)]

de, da’l B
— azUiq(go:ai'Bi) azUiq(so: ai:ﬁi)
de,0al dg, 0BT

azUiq(SO'aiiﬁi) azUiq(so: ai:ﬂi)

+[6aiT E)BiT] da;0al da; 0BT
0g, 0g,[|0%Uiq(g, @i, B)  0%Uiq(&,, @, By)
0B;0a; 0.0}
= [O3xzn  Osxn]

(45)

Appendix C: Curvature effects

The second partial derivatives of Uy, are obtained as
follows:
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