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ABSTRA C T  
This paper describes a method for synchronizing two chaotic systems with three-dimensional 
heterogeneous structures. We introduced a mathematical model and designed a new synchronous 
controller that can synchronize the system from different initial values. This paper analyzes the 
advantages and disadvantages of the synchronous controller, and also uses MATLAB software to 
generate the error curve of the synchronous system when the synchronous controller is activated 
on the response system, and shows its effectiveness. 
 
© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd. 

                    This is an open access article distributed under the CC BY-NC 4.0 license 
(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction 

Research on chaos theory is an important subject in 
nonlinear phenomena.One of his early pioneers was the 
American scientist Lorentz, who demonstrated the 
existence of chaotic systems in 1963 [1]. Equations 
governing chaotic systems are significant, especially since 
there are chaotic solutions to nonlinear equations. We 
design a mathematical model suitable for a particular 
system, investigate whether chaotic behavior occurs under 
the model, and then verify the fundamental characteristics 
of chaotic systems. 

The discovery of synchrony was first made by the famous 
physicist Huygens. Huygens happened to observe two 
adjacent pendulums swinging in perfect harmony. This 
breakthrough opened up disaster oscillator theory. The 
synchronous phenomenon in the natural world and the 
underlying mechanism have been brought to light. In 1990, 
Pecora and Carroll developed a response-driven 
synchronization method and demonstrated the 

phenomenon of chaotic synchronization for the first time 
in circuits by aligning the chaotic trajectories of the system 
under various initial conditions [2]. In physics, chaotic 
systems have been extensively studied and various 
methods have been developed. These include adaptive 
synchronization, delayed synchronization, pulse 
synchronization, etc. When investigating the 
synchronization of two chaotic systems, many researchers 
start by analyzing the equilibrium point of the control 
system. Then, both numerical simulations and functional 
methods are used to examine the accuracy of the 
simulation results based on the Lyapunov law stability 
theory [3], [4], [5]. We design an adaptive synchronous 
controller and propose an adaptive method to synchronize 
chaotic systems. 

2. Mathematical models of chaotic systems 

Chaos theory’s Qi system can be represented 
mathematically as shown below: 
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                                                                 (1) 

State variables of an unidentifiable nature, including 
variables like x, y, and z, are an integral part of the system. 
The state variable of the system is an unidentified quantity 
is , , Rx y z ∈ . 35a = , 8 3b = , 80c =  are the system’s 
typical parameters. 

The x, y, and z axes are the transformations for the state 

variables in the mathematical model ( ) ( ), , , ,x y z x y z→ − − ,

( ) ( ), , , ,x y z x y z→ − − , ( ) ( ), , , ,x y z x y z→ − − . 
The mathematical model for the system remains 

unchanged when subjected to z-axis transformation. 
Therefore, it may be concluded that the system’s 
mathematical model is symmetric around the z-axis. 

The mathematical model for the Qi chaotic system 
yields a partial derivative: 

( ) 116
1 0

3

x y z
V a b

x y z

∂ ∂ ∂
∇ = + + = − + + = − <

∂ ∂ ∂

                       (2) 

When a negative partial derivative is observed in the 
equation mentioned before, it indicates that the system’s 
mathematical model is dissipative. And its trajectory is 
controlled within a finite boundary as time elapses. 

2.1 Chaotic dynamic properties 

Designate the starting value for the Qi chaotic system as 

( ) ( )0 0 0, , 1,1,1x y z = . The MATLAB function toolbox 
computes the Lyapunov index for the Qi chaotic system as 

1 4.0517 0λ = > , 2 0.0027 0λ = − ≈ . The Lyapunov index 

holds significant importance since it 1 4.0517 0λ = > , this 
signifies that the Qi chaotic system can exhibit chaotic 
motion at that specific point in time. Calculating the 

Lyapunov dimension Ld  of a system involves using the 
formula for solving by inputting the three Lyapunov 
exponents obtained: 

1

4.0517 0.00271 2 2.0948
42.7151

i

L
j

j

id j
λ

λ +

∑ −== + = + =                  (3) 

The given condition can be satisfied by finding the 

largest integer j  that 0
1 i

j

i
λ∑ >

=
. Based on the formula 

mentioned above, it can be inferred that, 
=2.0948Ld , thus, 

the dimensional value of the chaotic system is fractional in 
nature. 

The graphs depicting the state variables of a chaotic 
system can be simulated using Matlab in the following 
manner. The Simulink simulation generates the phase 
trajectory diagram of the chaotic system as illustrated in 
Fig. 1. The phase trajectory curves for the Qi chaos system 
in varied coordinate systems are displayed in Fig. 2. 

 

Fig. 1 The construction of the Qi chaotic system and its 
simulation using Simulink 
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Fig. 2 Phase trajectory curve of Qi chaotic system system 

Initiate the system by assigning initial values as follows 
( ) ( )01 0 0, , 1,1,1x y z =  and ( ) ( )02 0 0, , 1.0001,1,1x y z =  
respectively, and, a mathematical model can be 
constructed on Simulink to plot the solution curves of the 
system's three corresponding variables, as illustrated in Fig. 
3. 

 

 

 

Fig. 3 Qi Solution curves of chaotic system in different 
states with different initial values 

Under the same conditions, the solution curves of the Qi 
chaotic system will greatly differ in a short period of time 
upon modifying only the initial value of state variable x by 
0.01%. It is evident that even a minimal change in initial 
value impacts the Qi chaotic system largely, indicating its 
susceptibility towards small perturbations. Sensitive 
dependence on initial conditions is a significant feature of 

chaotic systems, and its observation in the Qi chaotic 
system signifies its susceptibility towards even minute 
variations in initial value. 

2.2 Characteristic of equilibrium point 

The equilibrium state equation can be obtained by setting 
the right side of the system's mathematical model equation 
to 0: 

( ) 0

0

0

a y x yz

cx xz y

xy bz

− + =

− − =

− =







                                                                 (4) 

Solve the system of state, let: 

( )

( )

( )

( )
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  
 + − + + − 
  =
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  

+ − + + −    =
 + + + −



+ − + + −
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                                      (5) 

To obtain the equilibrium point of the mathematical 
model of the system, the given parameters can be 
substituted into the formula as follows: 

( )
( )
( )

( )
( )
( )

11

2 2

3 3

0, 0, 00, 0, 0

, , 26.3899, 8.0531, 79.6948o o o

, , 26.3899, 8.0531, 79.6948o o o

SS

S x y z S

S x y z S

==

= → =

= − − = − −


 
 
 
 

          (6) 

Linearizing the Qi chaotic system at the equilibrium 
point involves writing the coefficient of each variable into 
the matrix to determine its Jacobian matrix, which helps 
evaluate the equilibrium point by substituting the values 
accordingly: 

1
1

1

0
1 = 1 0

0 0
S

S

a a z y a a
J J c z x c

y x b b

− + −
= = − − − −

− −

   
   
      

             (7) 

Converting the aforementioned matrix into a 
determinant and equating it to zero helps obtain the 
characteristic equation upon its expansion, which is given 
as follows: 

( ) ( ) ( ) ( )2 1 0f s s b s a s a c a= + + + − − =                (8) 

By performing calculations, the characteristic roots of 
the matrix can be determined as follows: 
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1 2.6667s b= − = −                                                              (9) 

( ) ( ) ( )2

2

1 1 4 1
37.5788

2

a a a c
s

− + + + + −
= ≈              (10) 

( ) ( ) ( )2

3

1 1 4 1
73.5788

2

a a a c
s

− + − + + −
= ≈ −               (11) 

The equilibrium ( )1 0, 0, 0S =  is a saddle node. 
The approach to analyzing the last two stable points is 

identical to that of S1, and S2 and S3 exhibit symmetry 
along the z-axis. Therefore, by analyzing one of the 
equilibria, we can proceed to analyze S2 equilibrium as 
well. 

At equilibrium point ( )2 26.3899, 8.0531, 79.6948S =  
(which is the same as S1), the J matrix of the Qi chaotic 
system is linearized 

2

79.6948 8.0531
79.6948 1 26.3899

8.0531 26.3899

a a
J c

b

− +
= − − −

−

 
 
  

                    (12) 

Using the aforementioned method, the matrix is 
converted to a determinant and then equated to zero. Next, 
the obtained determinant is expanded to obtain the 
characteristic equation, which yields the eigenvalues of J2 
through calculation: 

1 45.8958s = −                                                                  (13) 

2,3 3.6146 32.3465 js = ±                                                   (14) 

While S1 has a negative eigenvalue, the other two 
equilibrium points contain a pair of complex roots that are 
conjugate to each other with a positive real part. Applying 
the Routh stability criterion indicates that S2 and S3 have 
similar characteristics as unstable foci within the system. 

From the data obtained in the table, we can conclude that 
only one of the three stable points shown by the Qi chaotic 
system remains stable, whereas the remaining two have 
been determined to be unstable. This instability leads to a 
divergence of nearby orbits, which becomes more 
pronounced over time. This divergence is a clear 
indication of the butterfly effect present within the system. 

With its characteristic feature of dissipation, the Qi 
chaotic system is capable of producing chaotic motion, 
ensuring stability of the system as a whole. The presence 
of the dissipative property in the Qi chaotic system aids in 
stabilizing the system, leading to the convergence of outer 
orbits on the attractor. However, the nearby orbitals 
experience a repulsive force and must be exponentially 

separated. As a result individual parts of the system may 
be unstable, resulting in a complex and difficult structure. 

The numerical simulation results demonstrate that the 
Lü chaotic system displays chaotic dynamics equivalent to 
that of the Qi chaotic system. 

3. Design of synchronous controller 

3.1 Driving system 

This article adopts the Qi chaotic system as the driver and 
presents the mathematical expression for the Qi chaotic 
system model: 

( )1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

x a y x y z

y c x x z y

z x y b z

= − +

= − −

= −













                                                (15) 

Among them, the typical parameters of Qi chaotic 
system are: 35a = , 8 3b = , 80c = . 

3.2 Response system 

This article utilizes the Lü chaotic system as the responsive 
system, and the synchronization controller equation is 
substituted with equivalent words to create a synonymous 
sentence: 

( ) 1

2

3

2 2 2 2

2 2 2 2 2

2 2 2 2 2

c

c

c

x a y x u

y x z c y u

z x y b z u

= − +

= − + +

= − +













                                                 (16) 

Typical parameters of Lü chaotic system are: 36a = ,
3b = , 20c = . The synchronization controller is 

[ ]1 2 3

T
c c c cu u u u= . 

To simulate the error system and the controller’s state 
synchronization curve, MATLAB software was employed, 
determine if these two chaotic systems with different 
architectures can exhibit complete synchronization. 

3.3 Direct method 

When the system's equilibrium state is highly stable and 
its output has attained a state of balance. As time 
progresses, the energy contained within the system will 
gradually diminish until it reaches the stable and minimum 
value of the equilibrium state. The Lyapunov direct 
method is based on an energy perspective. The system's 
motion will result in energy consumption, but the system 
capacity will not be depleted to zero. 
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Lyapunov's method involves the use of an artificial 
function to achieve this goal, this function is called 
Lyapunov function, denoted as ( , )v x t  or ( )v x . Let ( )v x  
be any scalar function, where x is the unknown variable of 
the system, if ( )v x  satisfies the following properties:  

(1) ( )( )= v xd
v x

dt
  is continuous and can reflect the trend of 

energy change; 
(2) ( )v x  is positive definite and can reflect the 

magnitude of energy; 

(3) When x →∞ , ( )v x →∞  reflects the distribution of 
energy, function ( )v x  is called Lyapunov function. 

Given two systems: 1 1 1( , , )A x y z= , 2 2 2( , , )Y x y z= , uc 
indicates the control quantity. 

( )
( ) c

A f A

B g B u

=

= +





                                                            (17) 

The key to achieving synchronization between two 
disparate chaotic systems lies in the discovery of a suitable 
uc that make lim ( ) ( ) 0

t
y t x t

→
− =

∞

. 

For any initial values (0)x  and (0)y , the problem of 
controlling the synchronization of the system can be 
converted into a problem of system error through 
transformation. 

Set the error [ ] [ ]1 2 3 2 1 2 1 2 1e e e e x x y y z z
Τ Τ

= = − − − , choose the 

Lyapunov function 2

1

1
( )=

2

n

ii
v x e

=
∑ , obviously ( )v x  is 

positive definite, the state error equation will be rendered 
asymptotically stable at the origin if ( )v x  is negative 
definite, that is, 1 1 2 2 3 3( )= 0v x e e e e e e+ + =     at t →∞  

identification of a suitable uc is imperative to attain 
negative definiteness in ( )v x . 

Set the controller to: 

[ ]1 2 3

T
c c cu u u uc =                                                        (18) 

The error system can be formulated through substituting 
similar words in the mathematical models of the drive 
system and the response system: 

1

2

3

1 2 2 1 2 1 1 1 1 1

2 2 2 2 2 2 1 1 1 1 1

3 2 2 2 3 1 1 1 2 1

( ) ( )( )

( 1)

( )

c

c

c

e a e e a a y x y z u

e x z c e c y x z c x u

e x y b e x y b b z u

= − + − − − +

= − + + + + − +

= − − + − +







             (19) 

Choose the Lyapunov function 2

1

1
( )=

2
ii

n
v x e

=
∑  and 

calculate 1 1 2 2 3 3( )=v x e e e e e e+ +    . 

2 1 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

1 1 2 3 2 2 2 1 1

( 1) ( )( )
(1 ) ( 1)

( 1) ( )
c

a e a e a a x y y z
u x z c e c y x z c x

x y b e x y b b z

− − + − − +

= − + − + − +
+ − − + −

 
 
  

            (20) 

The successive generations lead to the refinement of the 
formulas for the error and the standard parameters of both 
systems, resulting in incremental improvements. 

1 1 1 2 1 1

2 1 1 1

1 1 2 1

35( ) ( )

80

5

3

x y x x x y z

y y x z x

z x y z z

= − + − +

= − − +

= − −















                                    (21) 

The construction of a model for both the Qi chaotic 
system and the target Lü system is achieved through 
establishing their system equations and mathematical 
models, accompanied by the plotting of error and state 
synchronization curves. The purpose of this process is to 
demonstrate the effectiveness of this approach in 
synchronizing systems with varying structures. 

Here, the initial values of the two systems are:

( ) ( )1 1 1, , 1,1,1x y z = , ( )2 2 2, , (30 30 30)x y z = ， ， . 
Fig. 4 and Fig. 5 depict the error and state 

synchronization diagrams for both the Qi chaotic system 
and the Lü system, which were created using simulation 
software. 

 
Fig. 4 Simulation error curve of synchronous controller 
designed by center translation method 
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Fig. 5 Simulated state synchronization curve of 
synchronization controller designed with direct method 

After analyzing the simulation data depicted in the 
diagrams, it is observed that the system can reach its 
equilibrium state in approximately 4.5 seconds. 

4. Conclusion 

The direct method for designing synchronous controllers 
is both theoretically simple and practically efficient, 
providing significant savings in resources such as time and 
effort. With its ability to address synchronization problems 
in systems with different structures, it is widely considered 
an effective approach. 
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