
Corresponding author’s E-mail: kat@cs.miyazaki-u.ac.jp, takakura@earth.cs.miyazaki-u.ac.jp, kita@sun.ac.jp, yamaba@cs.miyazaki-u.ac.jp,
aburada@cs.miyazaki-u.ac.jp, oka@cs.miyazaki-u.ac.jp

167

Research Article
Extending BWDM to Support Various Types and Recursive
Definitions in VDM++ Test Case Generation

Shota Takakura1, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1, Kentaro Aburada1, Naonobu Okazaki1
1Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki, 889-2192
Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-
gun, Nagasaki, 851-2195 Japan

A R T I C L E IN FO
Article History

Received 24 November 2023

Accepted 28 June 2024

Keywords

Software testing
Formal methods
VDM++
Automatic generation
Test cases

ABSTR AC T
Generating test cases from VDM++ formal specifications, which help to eliminate ambiguities, is
both time-consuming and labor-intensive. To solve this problem, our laboratory has developed
BWDM, a tool for automatic test case generation from VDM++ specifications. However, the
original BWDM only supports integer types and cannot handle test cases for operations and
functions with recursive structures. To enhance BWDM's usefulness, this paper introduces
extensions to address these limitations. The results confirm that the extended BWDM can reduce
test case generation time compared to manual methods.

© 2022 The Author. Published by Sugisaka Masanori at ALife Robotics Corporation Ltd.

 This is an open access article distributed under the CC BY-NC 4.0 license
(http://creativecommons.org/licenses/by-nc/4.0/)/.

1. Introduction

Software plays an important to role support our daily
lives. Hence, its size and complexity have increased,
leading to a greater societal impact of software bugs. One
significant cause of these bugs is the use of natural
language during the early stages of software development,
as natural language is inherently ambiguous. To solve
this problem, formal methods are adopted in software
design. Among these methods, VDM is widely used, and
VDM++ serves as a formal specification language for
object-oriented modeling within VDM [1].

However, designing software with VDM++ necessitates
thorough testing. Manually generating test cases from
VDM++ specifications is both time-consuming and
labor-intensive, and it may result in incomplete testing.
To solve these problems, our laboratory has developed
BWDM [2], [3], an automated tool for generating test
cases from VDM++ specifications. Despite its usefulness,
the current version of BWDM is limited to supporting

only integer types and cannot handle test case generation
for operations and functions with recursive structures.

To enhance the functionality of BWDM, we have
introduced the following extensions:
 A feature to generate test cases for enumerated

types
 A feature to generate test cases for operations and

functions with recursive structures
This paper is organized as follows. Section 2 details the

extended BWDM, Section 3 presents application
examples, and Section 4 discusses and validates the
effectiveness of BWDM. Finally, Section 5 concludes the
paper.

2. The Extended BWDM

This chapter describes on the enhancements in BWDM.
Fig. 1 illustrates the structure of the extended BWDM.

SUGISAKA
MASANORI

Journal of Advances in Artificial Life Robotics
Vol. 4(3); December (2023), pp. 167–171

ON LINE ISSN 2435-8061; ISSN-L 2435-8061
https://alife-robotics.org/jallr.html

http://creativecommons.org/licenses/by-nc/4.0/
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka
https://grp.isbn-international.org/search/piid_solr?keys=sugisaka

168

2.1. Enhancing Test Case Generation for
Enumerated Types

To address the limitation of the original BWDM, which
only supported specific types, we enhance both the
Syntax Analyzer and Symbolic Executor. Specifically,
BWDM is extended to generate test cases for enumerated
types, which consist of a set of unique identifiers.

In the updated Syntax Analyzer, if an enumerated type
definition is detected during the abstract syntax tree
analysis, the type declaration is replaced with a list
containing the declared name and values. When this list
is found in the syntax tree within the Symbolic Executor,
JavaAPI [4] is used to generate enumerated types,
creating constraints for the SMT solver [5] used in the
propositional analyzer section. This process enables the

generation of input data for enumerated types through
symbolic execution.

2.2. Enhancing Test Case Generation for
Recursive Operations/Functions

To address the limitation of the original BWDM in
generating test cases for operations and functions with
recursive structures, we enhance both the Syntax
Analyzer and Test Suite Generator.

In the original BWDM, test cases could not be generated
if the parsing of a called operation/function was
incomplete during test suite generation. This issue
prevented the generation of an abstract syntax tree for
operations/functions with recursive calls.

To resolve this, we introduce an upper limit on the
number of recursive calls for operations or functions with
self-recursive calls. The abstract parse tree analysis
process is modified to be executed after the parse tree
analysis for all definitions is completed. This ensures that
test data generation occurs only after the complete
parsing of the VDM++ specification. Additionally, a
function is added to terminate the process if self-recursive

Fig. 1. The structure of the extended BWDM

Class judgeLightColor

Types

public TrafficLight = <BLUE> | <YELLOW> | <RED>;

functions

 judgeLightColor: TrafficLight ==> seq of char

 judgeLightCoulor (color) ==

 if color = <BLUE >

 "The color is blue. "

 if color = <YELLOW>

 "The color is yellow"

 if color = <RED>

 "The color is red."

end judgeLightColor

Fig. 2. VDM++ specification using enumerated type

Function Name : judgeLightColor

Argument Type : color:

Return Type : seq of (char)

Test Cases by Symbolic Execution

No.1 : <BLUE> -> "The color is blue"

No.2 : <YELLOW> -> "The color is yellow"

No.3 : <RED> -> "The clolor is red"

Fig. 3. Output when Fig.4 is applied to
the extended BWDM

169

calls exceed the set limit during the output data
generation phase in the Test Suite Generator.

3. Application Examples

This chapter presents examples to verify the functionality
of the extended BWDM.

3.1. Verification of Test Case Generation for
Enumerated Types

Fig. 2 illustrates a VDM++ specification that use an
enumerated type for verification purposes, and Fig. 3
displays the results obtained using the extended BWDM.
In Fig. 2, the "judgeLightColor" function defines "public
TraficLight = <BLUE>|<YELLOW>|<RED>;" as the
type. Fig. 3 demonstrates that test cases can be
successfully generated for this enumerated type
definition.

3.2. Verification of Test Case Generation for
Recursive Definitions

Fig. 4 shows a VDM++ specification with a recursive
structure used for verification, and Fig. 5 shows the
corresponding results using the extended BWDM.

In Fig. 4, the "calcSum" function is defined with a
recursive structure. Fig. 5 confirms that test cases can be
generated for this recursive definition.

4. Discussion

4.1. Verification of Test Case Generation for
Enumerated Types

As discussed in Section 3.1, the extended BWDM
successfully generates test cases from definitions using
enumerated types in the VDM++ specification shown in
Fig. 2. This confirms that the extension allows BWDM to
handle enumerated type definitions, thereby enhancing
its usefulness.

4.2. Evaluation of Test Case Generation for Recursive
Definitions

As detailed in Section 3.2, the extended BWDM is
capable of generating test cases from definitions with
recursive structures in the VDM++ specification shown
in Fig. 4. This demonstrates that the extension enables
BWDM to manage recursive definitions, thus improving
its effectiveness.

4.3. Comparison of Test Case Generation Time with
Manual Effort

We evaluate the time required to generate test cases using
the extended BWDM for VDM++ specifications that
include enumerated types and recursive structures,
comparing it to manual efforts. The VDM++
specifications in Fig. 2 and Fig. 4 are used for this
experiment. Manual verification is conducted by five
students: two graduate students and three fourth-year
undergraduates from our laboratory. The time taken to
generate comprehensive test cases without omissions is
recorded. The process is halted once the correct test cases
are produced, and any errors in the manually generated
test cases are noted. The comparison results are presented
in Table 1.

Table 1 indicates that using the extended BWDM saves
approximately 14 minutes compared to manual test case
generation. Additionally, human errors have been
observed in the manual process. This study has confirmed
that the extended BWDM, which includes functions for
generating test cases for enumerated types and recursive
structures, reduces both the time and errors associated

Function Name : ｓumOfNaturalNumbers

Argument Type : value:nat

Return Type : nat

Boundary Values for Each Argument

value: 4294967295 4294967294 0 -1

Test Cases of Boundary Values

No.1 : 4294967295 -> Undefined Action

No.2 : 4294967294 -> Undefined Action

No.3 : 0 -> 0

No.4 : -1 -> Undefined Action

Fig. 5. Output when Fig.6 is applied to
the extended BWDM

Class ｓumOfNaturalNumbers

 calcSum: nat ==> nat

 factorial (value) ==

 if value = 0 then

 0

 else value + calcSum (value - 1)

end sumOfNaturalNumbers

Fig. 4. VDM++ specification with recursive structure

Table 1. Comparison of test case generation time

170

with manual test case generation. Therefore, the
extension of BWDM enhances its usefulness.

4.4. Related Works

Ahmad Mustafa et al. conducted a systematic literature
review on automatic test case generation from
requirement specifications [6]. They identified and
discussed 30 primary studies out of 410, highlighting that
most software testing errors from issues in natural
language requirements. Detecting ambiguities and
incompleteness in natural language is challenging and
remains an important problem in requirements.
 On the other hand, BWDM uses the formal specification
language VDM++ for test case generation, producing test
cases from rigorous specifications that eliminate the
ambiguities and incompleteness. Therefore, BWDM does
not face the issues in test case generation from
requirement specifications discussed in [6].

Some approaches to test case generation use UML as the
input [7], [8]. However, it is not possible to capture all
the different characteristics of a system from UML.

In contrast, BWDM uses the formal specification
language VDM++ for test case generation. Hence, it is
possible to capture all the different characteristics of a
system from a detailed VDM++ specification.

Aamer Nadeem et al. proposed a method for automatic
test case generation for VDM++ specifications [9]. This
method determines input data using pre-conditions and
invariant conditions described in the instance variable
definition block. These conditions are equivalence
partitioned, and a representative value is randomly
selected from the valid input domain. Additionally, a test
sequence is generated using a manually prepared test
descriptor defined as a valid test sequence. The input data
and test sequences are then combined to generate test
cases.

In contrast, BWDM can generate test cases solely from
a VDM++ specification. Furthermore, test cases
generated by BWDM can be used for boundary value
testing and domain analysis testing. Test cases generated
through symbolic execution can also cover execution
flows that boundary value analysis might miss.

5. Conclusion

To enhance the usefulness of BWDM, an automatic test
case generation tool for VDM++ specifications, two
important extensions have been implemented. These
extensions address the limitations of supporting only
integer types, and the inability to generate test cases for
operations and functions with recursive structures.

The application examples of the enhanced BWDM were
presented, demonstrating its ability to generate test cases
for definitions using enumerated types and recursive
structures, thereby broadening the range of supported
types. It has been confirmed that the extended BWDM
reduces test case generation time by approximately 14
minutes compared to manual methods. Additionally, the
extended BWDM effectively eliminates human errors.

Consequently, the enhancements described in this paper
improve the usefulness of BWDM.

Future work includes:
 Extending support to types beyond integers and

enumerated types
 Generating test cases for input values with a higher

number of recursive calls
 Generating test cases for mutually recursive

functions

References

1. Overture Project. Manuals.
https://www.overturetool.org/documentation/manuals.ht
ml. (Accessed: 2023-12-18).

2. T. Katayama, F. Hirakoba, Y. Kita, H. Yamaba, K.
Aburada, and N. Okazaki. Application of Pirwise Tsting
into BWDM which is a Test Case Generation tool for the
VDM++ Specification. Journal of Robotics, Networking
and Artificial Life, Vol.6, No.3, pp.143-147, 2019.

3. T. Muto, T. Katayama, Y. Kita, H. Yamaba, K. Aburada,
and N. Okazaki. Expansion of Application Scope and
Addition of a Function for Operations into BWDM which
is an Automatic Test C55-262, 2022.

4. Z3 Prover/z3. htt ases Generation Tool for VDM++
Specification. Journal of Robotics, Networking and
Artificial, Vol.9. No.3, pp.2ps://github.com/Z3Prover/z3.
(Accessed: 2024-6-27).

5. Z3: Package com.microsoft.z3.
https://z3prover.github.io/api/html/namespacecom_1_1
microsoft_1_1z3.html. (Accessed: 2024-6-27).

6. Ahmad Mustafa, Wan M. N. Wan-Kadir, Noraini Ibrahim,
Muhammad Arif Shah. Automated Test Case Generation
from Requirements: A Systematic Literature Review.
Computers, Materials & Continua, vol. 67, no.2, pp.
1819-1833, 2021.

7. M. Lafi, T. Alrawashed, A. M. Hammad. Automated Test
Cases Generation From Requirements Specification,
International Conference on Information Technology
(ICIT), pp. 852-857, 2021.

8. Mauricio Rocha, Adenilso Simão, Thiago Sousa. Model-
based test case generation from UML sequence diagrams
using extended finite state machines. Software Quality
Journal, Volume 29, Issue 3, pp.597-627, 2021.

9. Aamer Nadeem, Muhammad Jaffar-Ur-Rehman.
Automated Test Case Generation from IFAD VDM++
Specifications. SEPADS 05: 4th WSEAS International
Conference on Software Engineering, Parallel &
Distributed Systems, No.28, pp.1-7, 2005.

https://www.overturetool.org/documentation/manuals.html
https://www.overturetool.org/documentation/manuals.html
https://www.overturetool.org/documentation/manuals.html
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://www.atlantis-press.com/journals/jrnal/125925497/view
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://cir.nii.ac.jp/crid/1390575960085658752
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://z3prover.github.io/api/html/namespacecom_1_1microsoft_1_1z3.html
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://www.techscience.com/cmc/v67n2/41326
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://ieeexplore.ieee.org/document/9491761
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://link.springer.com/article/10.1007/s11219-020-09531-0
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802
https://dl.acm.org/doi/10.5555/1365774.1365802

171

Authors Introduction

Mr. Shota Takakura

He received the Bachelor's degree in
engineering (computer science and
systems engineering) from the
University of Miyazaki, Japan in 2023.
He is currently a Master's student in
Graduate School of Engineering at the
University of Miyazaki, Japan. His
research interests include software

testing, software quality, and formal method.

Dr. Tetsuro Katayama
He received a Ph.D. degree in engineering
from Kyushu University, Fukuoka, Japan,
in 1996. From 1996 to 2000, he has been
a Research Associate at the Graduate
School of Information Science, Nara
Institute of Science and Technology,
Japan. Since 2000 he has been an
Associate Professor at the Faculty of

Engineering, Miyazaki University, Japan. He is currently a
Professor with the Faculty of Engineering, University of
Miyazaki, Japan. His research interests include software
testing and quality. He is a member of the IPSJ, IEICE, and
JSSST.

Dr. Yoshihiro Kita

He received a Ph.D. degree in systems
engineering from the University of
Miyazaki, Japan, in 2011. He is currently
an Associate Professor with the Faculty of
Information Systems, University of
Nagasaki, Japan. His research interests
include software testing and biometrics
authentication.

 Dr. Hisaaki Yamaba

He received the B.S. and M.S. degrees in
chemical engineering from the Tokyo
Institute of Technology, Japan, in 1988
and 1990, respectively, and the Ph D.
degree in systems engineering from the
University of Miyazaki, Japan in 2011. He
is currently an Assistant Professor with the
Faculty of Engineering, University of

Miyazaki, Japan. His research interests include network
security and user authentication. He is a member of SICE
and SCEJ.

Dr. Kentaro Aburada

He received the B.S., M.S, and Ph.D.
degrees in computer science and system
engineering from the University of
Miyazaki, Japan, in 2003, 2005, and 2009,
respectively. He is currently an Associate
Professor with the Faculty of Engineering,
University of Miyazaki, Japan. His

research interests include computer networks and security.
He is a member of IPSJ and IEICE.

Dr. Naonobu Okazaki
He received his B.S, M.S., and Ph.D.
degrees in electrical and communication
engineering from Tohoku University,
Japan, in 1986, 1988 and 1992,
respectively. He joined the Information
Technology Research and Development
Center, Mitsubishi Electric Corporation in
1991. He is currently a Professor with the

Faculty of Engineering, University of Miyazaki since 2002.
His research interests include mobile network and network
security. He is a member of IPSJ, IEICE and IEEE.

	ARTICLE INFO
	1. Introduction
	2. The Extended BWDM
	2.1. Enhancing Test Case Generation for Enumerated Types
	2.2. Enhancing Test Case Generation for Recursive Operations/Functions

	3. Application Examples
	3.1. Verification of Test Case Generation for Enumerated Types
	3.2. Verification of Test Case Generation for Recursive Definitions

	4. Discussion
	4.1. Verification of Test Case Generation for Enumerated Types
	4.2. Evaluation of Test Case Generation for Recursive Definitions
	4.3. Comparison of Test Case Generation Time with Manual Effort
	4.4. Related Works

	5. Conclusion
	References

